MHB The_owner's question at Yahoo Answers (Convergence of an integral)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The integral in question, ∫₀^∞ (e^x / (e²ˣ + 3)) dx, is determined to be convergent through a substitution that transforms it into ∫₁^∞ (1 / (t² + 3)) dt. The convergence is established by comparing it to the known convergent integral ∫₁^∞ (1 / t²) dt. The evaluation of the integral leads to a final result of (π√3)/9. The discussion also highlights the complexity of determining convergence for more general integrals, indicating that while the convergence of this specific integral is clear, similar methods apply to other cases.
Mathematics news on Phys.org
Hello the_owner,

Your integral is $\displaystyle\int_0^{\infty}\dfrac{e^x}{e^{2x}+3}\;dx$. Using the substitution $t=e^x$ we get $$\displaystyle\int_0^{\infty}\dfrac{e^x}{e^{2x}+3}\;dx=\displaystyle\int_1^{\infty}\dfrac{1}{t^2+3}\;dt$$ But $$\displaystyle\lim_{t\to \infty}\left(\dfrac{1}{t^2+1}:\dfrac{1}{t^2}\right)=1\neq 0$$ According to a well-known criterion, the given integral is convergent if and only if $\displaystyle\int_1^{\infty}\dfrac{1}{t^2}\;dt$ is convergent and this one is convergent (again using a well-known theorem), so the given integral is convergent.
 
[math]\displaystyle \begin{align*} \int_0^{\infty}{\frac{e^x}{e^{2x} + 3}\,dx} = \int_0^{\infty}{\frac{e^x}{ \left( e^x \right) ^2 + 3 }\,dx} \end{align*}[/math]

Let [math]\displaystyle \begin{align*} u = e^x \implies du = e^x\,dx \end{align*}[/math] and note that [math]\displaystyle \begin{align*} u(0) = 1 \end{align*}[/math] and [math]\displaystyle \begin{align*} u \to \infty \end{align*}[/math] as [math]\displaystyle \begin{align*} x \to \infty \end{align*}[/math], then the integral becomes...

[math]\displaystyle \begin{align*} \int_0^{\infty}{\frac{e^x}{\left( e^x \right) ^2 + 3} \, dx} &= \int_1^{\infty}{\frac{1}{u^2 + 3}\,du} \\ &= \lim_{\epsilon \to \infty} \left[ \frac{1}{\sqrt{3}} \arctan{\left( \frac{u}{\sqrt{3}} \right)} \right]_1^{\epsilon} \\ &= \frac{1}{\sqrt{3}}\left\{ \left[ \lim_{ \epsilon \to \infty} \arctan{\left( \frac{\epsilon}{\sqrt{3}} \right) } \right] - \arctan{\left( \frac{1}{\sqrt{3}} \right) } \right\} \\ &= \frac{1}{\sqrt{3}} \left( \frac{\pi}{2} - \frac{\pi}{6} \right) \\ &= \frac{1}{\sqrt{3}} \left( \frac{\pi}{3} \right) \\ &= \frac{\pi \, \sqrt{3}}{9} \end{align*}[/math]

The integral is obviously convergent...
 
Prove It said:
The integral is obviously convergent...

Right, but the problem only asks for the convergence, and this cuestion is more general. For example, to study the convergence of $$\displaystyle\int_1^{\infty}\dfrac{x^3+1}{x^5+11x^4+x^3+\pi x^2+(\log 2)x+\sqrt[3]{2}}\;dx$$ has exactly the same difficulty that to study the convergence of $$\displaystyle\int_1^{\infty}\dfrac{1}{t^2+3} \;dt$$ Another thing, is to compute them.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top