MHB Theodore K's question at Yahoo Answers (Radius of convergence)

AI Thread Summary
The discussion addresses how to determine the radius of convergence for the series given by (-1)^n * (x^(3n)) / ((2n)!). The ratio test is recommended for this problem, leading to the calculation of the limit as n approaches infinity. The limit simplifies to |x^3| / ((2n+2)(2n+1)), which approaches 0 for all real x. This indicates that the series converges for all x, resulting in an infinite radius of convergence, R = +∞. The conclusion is that the series converges for any real number x.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

How do i begin to solve for the Radius of convergence and Interval of this series? I know I should be using either the ratio test or root test for this problem :

(-1)^n * (x^(3n)) / ((2n)!) from n=0 to inf

Here is a link to the question:

Calculus Power Series/Radius of Convergence/Interval of Convergence Question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Theodore K,

The ratio test works well here $$\lim_{n\to +\infty}\left|\frac{u_{n+1}}{u_n}\right|=\lim_{n \to +\infty}\left|\frac{(-1)^{n+1}x^{3n+3}}{(2n+2)!}\cdot\frac{(2n)!}{(-1)^nx^{3n}}\right|=\\\lim_{n\to +\infty}\left|\frac{x^{3}}{(2n+2)(2n+1)}\right|=0<1\; (\forall x\in\mathbb{R})$$ This implies that the radius of convergence is $R=+\infty$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top