Thermodynamics of mercury thermometers

AI Thread Summary
The discussion centers on calculating the pressure of air in a faulty mercury thermometer at different temperatures. Initially, the thermometer has a pressure of 2 mmHg at 0 degrees Celsius with an air space of 10 cm. As the temperature increases to 10 degrees Celsius, the air space reduces to 2 cm, prompting a recalculation of the air pressure. The change in length of the mercury column is noted, leading to an increase of 80 mmHg, resulting in a total pressure of 82 mmHg at 10 degrees Celsius. The importance of temperature's effect on trapped air and the accuracy of the thermometer is emphasized.
carlzz7
Messages
2
Reaction score
0
Please don't ignore the template.
The space above the mercury column in a thermometer ordinarily is evacuated, but due to faulty manufacture, a particular thermometer has a pressure of 2 mmHg of air in this space when the whole thermometer is immersed in a bath at 0 degrees Celsius. Calculate the pressure of the air when the whole thermometer is immersed in a bath at 10 degrees Celsius. At 0 degrees Celsius the length of air space is 10 cm and at 10 degrees Celsius the length of air space is 2 cm.

I started out by using p = rho * g * h. For 0 degrees Celsius I got that rho = 212.31 Pa. I'm not sure that rho would be the same for 100 degrees Celsius though, because the pressure and length are changing. If rho is different, how would I go about solving for it to fill into the formula for 100 degrees celsius?
 
Physics news on Phys.org
carlzz7 said:
The space above the mercury column in a thermometer ordinarily is evacuated, but due to faulty manufacture, a particular thermometer has a pressure of 2 mmHg of air in this space when the whole thermometer is immersed in a bath at 0 degrees Celsius. Calculate the pressure of the air when the whole thermometer is immersed in a bath at 10 degrees Celsius. At 0 degrees Celsius the length of air space is 10 cm and at 10 degrees Celsius the length of air space is 2 cm.

I started out by using p = rho * g * h. For 0 degrees Celsius I got that rho = 212.31 Pa. I'm not sure that rho would be the same for 100 degrees Celsius though, because the pressure and length are changing. If rho is different, how would I go about solving for it to fill into the formula for 100 degrees celsius?

In the formula P = ρ ⋅ g ⋅ h, ρ is the mass density of the fluid, so it does not have units of pascals. :frown:

Since the manufacturing of the thermometer was faulty and allowed air to enter, it seems the problem is asking you to consider the effect that temperature has on this trapped air, and how this affects the accuracy of the device. :wink:
 
So the pressure of the air equals the pressure of the mercury. If the change in length is 10cm - 2 cm = 8cm, then the mercury would have increased 80 mmHg. Add this to the original 2 mmHg and you get 82 mmHg at 10 degrees Celsius. Am I thinking about this correctly?
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top