- #36
pmb_phy
- 2,952
- 1
Me? Yeeesh! You sure have a lot to learn about the relativity community. Fine. Okay, me. But also Einstein, Wheeler, Thorne, Rindler, D'Inverno, Sartori, D'Inverno, Mould, Peacock, Guth, etc. etc. etc. etc. etc. etc. etc. etc.DW said:You ..
In 1905 Einstein attempted to write the equations of a charged particle in an EM field in the form F = ma. That led to his use of transverse and longitudinal mass. In the year that followed, i.e. 1906, Planck showed that the Lorentz force could be written in the form...are wanting to replace the m in that form of Newton's second law with Planck's variable mass concept,...
[tex]\bold F = \frac{d\bold p}{dt} = \frac{d(\gamma m_o \bold v)}{dt} = q(\bold E + \bold v \times \bold B) [/tex]
Or substituting in relativistic mass m = gamma m_o
[tex]\bold F = \frac{d(m \bold v)}{dt} = q(\bold E + \bold v \times \bold B) [/tex]
where m is the relativistic mass of the body. After that paper Planck never tried to prove that mass can in all cases be set equal to m = gamma m_o so he did not get the credit for showing that m = gamma m_o. Hence he does not deserved the credit. Three years later, in 1909, Tolman and Lewis argued that mechanics should be obtained from the conservation laws and the principle of relativity and without reference to electrodynamics. In their famous paper The Principle of Relativity and Non-Newtonian mechanics they demonstrated the feasability of such a notion through the now famous collision thought experiment.Three years later in 1912 Tolman published a more general version in his famous paper Non-Newtonian Mechanics: The Mass of a Moving Body. All relativity texts (at least those which I know of) which derive the momentum equation p = gamma*m_o*v now use Tolman's method as described in that paper. Neither paper had anything to do directly with force. It was due to this work that, in part, was responsible for relativity papers to no longer be restrticted to EM journal references. Hence Tolman and Lewis are given the credit for being the ones to show that mass depends on velocity.
Last edited by a moderator: