Three capacitors RC circuit questions

AI Thread Summary
The discussion revolves around a circuit with three resistors, three capacitors, a battery, and two switches, focusing on the charge on capacitor C2 after closing the switches and the time it takes for the charge to drop after reopening switch S2. For Part A, the correct charge on capacitor C2 after a long time is determined to be 270 μC. In Part B, after switch S2 is reopened, it takes 1500 μsec for the charge on C2 to drop to 1/e of its fully charged value. The participants clarify the circuit's behavior, noting that once S2 is opened, the right side of the circuit becomes isolated from the left side, affecting the analysis of resistors R1 and R3. The discussion emphasizes understanding circuit isolation and time constants in capacitor discharge scenarios.
syhpui2
Messages
23
Reaction score
0

Homework Statement



Three resistors, three capacitors, a battery and two switches are connected in the circuit shown below. The values of all circuit elements are given in the figure. Originally, the switches S1 and S2 are open (as shown) and all of the capacitors are uncharged. At time t = 0, both switches are closed.

http://i.imgur.com/BOq2c.png
BOq2c.png



Part A

What is the charge Q2 on capacitor C2 a very long time after the switches are closed?
(a) Q2 = 0 μC
(b) Q2 = 33 μC
(c) Q2 = 90 μC
(d) Q2 = 180 μC
(e) Q2 = 270 μC (Correct Answer)



Part B

After a very long time with both switches in the closed position, switch S2 is reopened. How long (t1/e) does it take for the charge on capacitor C2 to drop to 1/e (36.8%) of its fully-charged value (i.e. of the value it had just before S2 was reopened)?
(a) t1/e = 1200 μsec
(b) t1/e = 1500 μsec (Correct Answer)
(c) t1/e = 3000 μsec
(d) t1/e = 3600 μsec
(e) t1/e = 4800 μsec



Homework Equations



KVL,KCL

The Attempt at a Solution



For part A, what I tried is
Voltage across is 18 X ¾ (R3/ (R1+R3))= 27/2
(Because Q=CV and in this case Ic=0 so no current on R2?)
I get right answer, just not sure if I am thinking correctly.

For part B,
I used

Q= Q(0)e^-(t/tau)

However, I am not sure how do I find time constant in this case.

THX!
 
Physics news on Phys.org
Your part A method is fine.

For part B, once switch S2 is opened the right hand portion of the circuit is isolated from the left hand portion. So it's just two parallel capacitors and a resistor. What does that suggest to you?
 
gneill said:
Your part A method is fine.

For part B, once switch S2 is opened the right hand portion of the circuit is isolated from the left hand portion. So it's just two parallel capacitors and a resistor. What does that suggest to you?

How about R1 and R3 in this case?
Are they in parallel?
Thanks
 
syhpui2 said:
How about R1 and R3 in this case?
Are they in parallel?
Thanks

No! With switch S2 open they are isolated from each other (no complete circuit).
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top