MHB TikZ Challenge 1 - Geometrical Diagram

AI Thread Summary
The TikZ Challenge invites participants to create impressive geometrical diagrams using TikZ, focusing on creativity and complexity. Submissions must be unique, with only one allowed per participant, and cannot be altered after posting. The challenge emphasizes the use of interesting features, embellishments, and mathematical properties in the diagrams. A voting period will follow the submission phase, lasting two weeks, to determine the best or prettiest picture. Participants are encouraged to clarify the uniqueness of their submissions while adhering to the rules outlined.
I like Serena
Science Advisor
Homework Helper
MHB
Messages
16,335
Reaction score
258
Who can make the most impressive, interesting, or pretty TikZ picture?

This first challenge is to create a geometrical diagram, like a triangle, that is somehow interesting or impressive.
We might make it a very complicated figure, or an 'impossible' figure, or use pretty TikZ embellishments, or use 'neat' $\LaTeX$ features, or... well... that's up to you!
If it's not immediately obvious, please mention what makes your picture special.

Please post your submission in this thread.
This thread will be closed after 2 weeks.
After that we will have 2 weeks to vote on what we think is the 'best' or 'prettiest' TikZ picture.

Only 1 submission of a picture is allowed, and it is not allowed to change the picture after submission.
It is allowed to add more information later to clarify what makes the picture special.
Any change to the picture itself will disqualify it.
See http://mathhelpboards.com/tikz-pictures-63/tikz-announcement-22140.html for more information on how to create and post TikZ pictures.
To help create pictures we can use this http://35.164.211.156/tikz/tikzlive.html.
 
Mathematics news on Phys.org
To start things off, here is my submission:
\begin{tikzpicture}[blue]
\coordinate (A) at (0,0);
\coordinate (B) at (4,0);
\coordinate (C) at (4,3);
\draw[blue, ultra thick] (A) -- (B) -- (C) -- cycle;
\path (A) node[below left] {A} -- (B) node[below right] {B} -- (C) node[above] {C};
\path (A) -- node[below] {c} (B) -- node
{a} (C) -- node[above left] {b} (A);
\path (A) node[above right, xshift=12] {$\alpha$};
\draw[thick] (B) rectangle +(-0.4,0.4);
\draw[thick] (A) +(1,0) arc (0:atan(3/4):1);
\end{tikzpicture}

This picture is special because it's a basic shape that showcases:
  1. Naming coordinates.
  2. Drawing a closed polygon.
  3. Embellishing with properties (for color and thickness).
  4. Adding labels next to nodes and next to lines.
  5. Specifying relative coordinates.
  6. Drawing an arc.
  7. Using a mathematical function (for the angle of the arc).
 
Last edited:
\begin{tikzpicture}[scale=2]
\usetikzlibrary{calc}
\coordinate (A) at (0,0);
\coordinate (B) at (1,2.5);
\coordinate (C) at (4,0);
\draw (A) -- (B) -- (C) -- cycle;
\draw (B) -- ($(A)!(B)!(C)$) ++(90:0.2) -- ++(0:0.2) -- +(-90:0.2);
\draw (A) -- ($(B)!(A)!(C)$) ++(-39.806:0.2) -- ++(50.194:-0.2) -- +(-39.806:-0.2);
\draw (C) -- ($(A)!(C)!(B)$) ++(68.2:-0.2) -- ++(-21.8:0.2) -- +(68.2:0.2);
\draw (A) node
{$A$} -- (B) node[above]{$B$}node[midway,above]{$c\quad$} -- (C)node
{$C$}node[midway,above]{$\quad a$} -- (A)node[midway,below]{$b$};
\node[align=center,font=\bfseries, yshift=2em] (title)
at (current bounding box.north)
{An illustration of the altitudes of a triangle, \\ intersecting at a single point called the orthocenter};
\end{tikzpicture}

This TikZ diagram includes a title.​
 
\begin{tikzpicture}
\draw[<->][red] (-5.5,0) -- (5.5,0) node
{$x$};
\draw[<->][red] (0,-5.5) -- (0,5.5) node[above] {$y$};
\foreach \x in {-5,-4.5,...,-0.5,0.5,1,...,5}
{
\foreach \y in {-5,-4.5,...,-0.5,0.5,1,...,5}
{
\def \angle {atan((3*\x*\y)/(2*(\x)^2-(\y)^2))};
\draw[thick,blue] ({\x + 0.1*cos(\angle)},{\y + 0.1*sin(\angle)}) -- ({\x + 0.1*cos(\angle + 180)},{\y + 0.1*sin(\angle + 180)});
}
}
\end{tikzpicture}

This TikZ diagram illustrates a direction field for a magnetic dipole, and utilizes the following:

  • Nodes for the axis labels.
  • Nested foreach loops.
  • The definition of an angle (slope) based on coordinates.
  • Parametric values for the endpoints of line segments.
 
[TIKZ][scale=3]
\draw[step=.5cm, gray, very thin] (-1.2,-1.2) grid (1.2,1.2);
\filldraw[fill=green!20,draw=green!50!black] (0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;
\draw[->] (-1.25,0) -- (1.25,0) coordinate (x axis);
\draw[->] (0,-1.25) -- (0,1.25) coordinate (y axis);
\draw (0,0) circle (1cm);
\draw[very thick,red] (30:1cm) -- node[left,fill=white] {$\sin \alpha$} (30:1cm |- x axis);
\draw[very thick,blue] (30:1cm |- x axis) -- node[below=2pt,fill=white] {$\cos \alpha$} (0,0);
\draw (0,0) -- (30:1cm);
\foreach \x/\xtext in {-1, -0.5/-\frac{1}{2}, 1}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north,fill=white] {$\xtext$};
\foreach \y/\ytext in {-1, -0.5/-\frac{1}{2}, 0.5/\frac{1}{2}, 1}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east,fill=white] {$\ytext$};
[/TIKZ]

This TikZ picture is special, because it demonstrates:
- The very foundation of trigonometry
- Construction of a coordinate system
- Construction of a grid
- Coloring of line segments
- The making of tick labels
- How to fill in with colors
- How to use different line thickness
- How to position labels
 
Thank you everyone for your submissions!

I've created a http://mathhelpboards.com/challenge-questions-puzzles-28/tikz-challenge-1-voting-22273.html, which will be open for 2 weeks.
Please everyone, give your vote!

Closing this thread.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
2
Views
2K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
0
Views
5K
Replies
6
Views
2K
Replies
11
Views
3K
Replies
17
Views
2K
Replies
31
Views
4K
Back
Top