I Time-Dependent Lagrangian Leads to Time Dilation?

stevendaryl
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
8,943
Reaction score
2,954
This is just something unexpected that I noticed recently, and I hadn't heard anyone mention it before.

The relativistic Lagrangian for a particle moving under a scalar potential ##\Phi## is this:

##L = \frac{1}{2} m g_{\mu \nu} \dfrac{dx^\mu}{d\tau} \dfrac{dx^\nu}{d\tau} - \Phi##

This leads to the equations of motion:

##m \dfrac{d^2 x^\mu}{d\tau^2} = - \partial^\mu \Phi##

So that's just the relativist generalization of Newton's ##F = m A##, with ##F = -\nabla \Phi##. However, a difference is that it's a 4-D equation, rather than a 3-D equation. So let's look at just the 0th component, with ##x^0 = t##:

##m \dfrac{d^2 t}{d\tau^2} = - \dfrac{\partial \Phi}{\partial t}##

This is truly unexpected (to me). When there is no potential, ##\dfrac{dt}{d\tau}## is the time dilation factor ##\gamma##. The above equation seems to be saying that time dilation depends not only on velocity (or spacetime curvature, if you consider General Relativity, which I'm not doing here) but also on the potential. So even a particle at rest will experience time dilation if it is in a time-varying potential.

Another thing that is surprising is that this time dilation can be positive or negative. So if a particle starts out at rest, with ##\dfrac{dt}{d\tau} = 1##, then a negative value for ##- \dfrac{\partial \Phi}{\partial t}## will lead to the particle having ##\dfrac{dt}{d\tau} \gt 1##. So time runs faster for the particle, rather than slower.

Is this a real effect? My guess is that it wouldn't be easy to test because there are so few scalar fields (the only one I know of is the Higgs field), and they are not as easily manipulated as the electromagnetic field.
 
  • Wow
  • Like
Likes Demystifier and Dale
Physics news on Phys.org
I have studied this stuff in more detail in
https://arxiv.org/abs/1006.1986
and published as a part of a book chapter
https://arxiv.org/abs/1205.1992

The scalar potential can be viewed as a dynamical mass squared, which can become negative so that particle can exceed the velocity of light.

But note that your parameter ##\tau##, called ##s## in my work, is not the usual proper time. Hence, the potential does not modify the time dilation. It only modifies the relation between proper time and this parameter.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...

Similar threads

Back
Top