- #36
voko
- 6,054
- 391
The second integration is even easier: [tex]\frac {1} {\alpha} \int_0^t \tanh \alpha a t dt =\frac {1} {\alpha} \int_0^t \frac {\sinh \alpha a t} { \cosh \alpha a t }dt = \frac {1} {\alpha} \int_0^t \frac { (\frac {\cosh \alpha a t} {\alpha a})'} { \cosh \alpha a t }dt = [/tex][tex] = \frac {1} {\alpha^2 a} \left[\ln \cosh \alpha a t\right]_0^t = \frac {1} {\alpha^2 a} \ln \cosh \alpha a t = \int_{x_0}^{x} dx = x - x_0[/tex]