Topology, defn of a nowhere dense set in a metric space

rourky
Messages
7
Reaction score
0

Homework Statement


Defn: A subset A of a metric space (X, d) is NOWHERE DENSE if its closure has empty interior.

Now I am told that this implies 1. A is nowhere dense iff closure of A does not contain any non-empty open set and 2. A is nowhere dense iff each non-empty open set has a non-empty open subset disjoint from A.

I have no problem with statement 1, but with regards to statement 2, my query is, is it implicit that each non-empty open set is a non-empty open set in X?


Homework Equations


The closure of A is the union of A and its limit pts


The Attempt at a Solution


I ask the question because from statement 1, there can be no open set in the closure of A, and thus in A or the set of its limit pts. The only other set where an open set could be seems to be X.
 
Physics news on Phys.org
Yes. I would take 'open' to mean 'open in X'. After all, a nowhere dense set has to have someplace to be nowhere dense in.
 
Thanks Dick, that's the second time you've helped me out this week.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top