Total machine system efficiency

In summary: Certain types of gears, like helical gears, have a very high efficiency when used in reverse. In summary, the average efficiency of a line of gearboxes with an efficiency of 90% is 18.5%.
  • #1
Pinon1977
126
4
TL;DR Summary
Trying to determine the total efficiency of a system of gearboxes within a larger machine system
Please see the attached sketch. Basically I have a system of three gear boxes, each with their own respective efficiencies. I'm trying to determine, at the end of this string of gearboxes, what the overall efficiency is. How might one go about determining this? Do you just take the average? 70 + 80 + 90 / 3?
IMG_20230622_190057704_HDR.jpg
 
Engineering news on Phys.org
  • #2
I'm no expert on gearboxes, but for most systems you would multiply the efficiencies of the series systems to get the overall efficiency. So 0.7 x 0.8 x 0.9 = ?
 
  • Like
Likes Pinon1977, Baluncore, Bystander and 1 other person
  • #3
Consider a line of 16 gearboxes, each with an efficiency of 90%. The average efficiency would be 90%. But energy must pass through each gearbox in turn to reach the next, with a loss at each step.
In reality, the efficiency would be;
0.9016 = 0.1853 = 18.5%.
 
  • #4
Baluncore said:
Consider a line of 16 gearboxes, each with an efficiency of 90%. The average efficiency would be 90%. But energy must pass through each gearbox in turn to reach the next, with a loss at each step.
In reality, the efficiency would be;
0.9016 = 0.1853 = 18.5%.

Wow!!!! That's not the explanation I was expecting, but it make sense to a certain degree.

Does it matter what kind of gearbox it is? Planetary vs worm gear vs helical, etc? I was loosely presuming that there would be some sort of gearbox constant or multiplier (depending upon the type of gearbox being used).
 
  • #6
Pinon1977 said:
Does it matter what kind of gearbox it is? Planetary vs worm gear vs helical, etc?
Different types of gearboxes have different energy efficiencies.

Generally, a two-step reduction box is less efficient than a one-step reduction, but the one-step reduction weighs more for the same ratio and power.

The bearings used inside the gearbox make a big difference as they are subjected to significant side forces on the shafts.

Planetary gears can cancel side forces on the shafts, so are often more efficient.

The ease of driving a gearbox backwards has efficiency implications. A worm gear is very inefficient when driven backwards.
 

Related to Total machine system efficiency

What is total machine system efficiency?

Total machine system efficiency refers to the ratio of useful output energy (or work) produced by a machine to the total input energy supplied to it. It is expressed as a percentage and indicates how effectively a machine converts input energy into useful output.

How is total machine system efficiency calculated?

Total machine system efficiency is calculated using the formula: Efficiency (%) = (Useful Output Energy / Total Input Energy) * 100. This formula helps determine the percentage of input energy that is converted into useful work by the machine.

What factors affect the efficiency of a machine system?

The efficiency of a machine system can be affected by various factors including friction, heat losses, energy conversion losses, mechanical wear and tear, and the quality of components used. Proper maintenance and optimal design can help minimize these losses and improve efficiency.

Why is total machine system efficiency important?

Total machine system efficiency is important because it directly impacts energy consumption, operational costs, and environmental sustainability. Higher efficiency means less energy waste, leading to cost savings and reduced environmental impact due to lower fuel consumption and emissions.

Can total machine system efficiency be improved?

Yes, total machine system efficiency can be improved through several methods such as regular maintenance, using high-quality components, optimizing design, reducing friction and heat losses, and employing advanced technologies like variable frequency drives and energy-efficient motors.

Similar threads

Replies
2
Views
966
  • General Engineering
Replies
26
Views
2K
  • Mechanical Engineering
Replies
6
Views
1K
  • Mechanical Engineering
Replies
3
Views
1K
Replies
58
Views
5K
  • Mechanical Engineering
Replies
5
Views
2K
Replies
10
Views
2K
  • Mechanical Engineering
Replies
19
Views
4K
  • Mechanical Engineering
Replies
3
Views
2K
  • Differential Equations
Replies
1
Views
929
Back
Top