- #1
msumm21
- 223
- 16
I realize there are several practical problems with what I say below, but my question is if anything is _theoretically_ wrong with this. I'm just thinking of the problem in 1 dimension right now and ignoring the interaction potential between the particles and people involved (I don't think that's relevant to my point).
Let's say Alice and Bob put up one side of a infinite square well at x=0. Alice remains around x=0, but Bob travels several light years away to x=a and beforehand Bob gives Alice some particles and tells her to wait for a period of time T and then measure the energy of the particles. If the energy values are in the set [tex]\{\frac{n^2\pi^2\hbar^2}{2m(a+\delta)^2}: n\in \mathbb{N}\}[/tex] (i.e. Bob put up the other end of the well at [tex]a+\delta[/tex]) then Alice is supposed to come meet Bob, but if any are not in this set (say Bob put up the well at [tex]a-\delta[/tex]) then Bob will go back to x=0 to meet Alice.
Would that be a means for instantaneously transmitting a message, or will Alice's particles not "feel" the other end of the well until something propagates back to her, at or below the speed of light?
Let's say Alice and Bob put up one side of a infinite square well at x=0. Alice remains around x=0, but Bob travels several light years away to x=a and beforehand Bob gives Alice some particles and tells her to wait for a period of time T and then measure the energy of the particles. If the energy values are in the set [tex]\{\frac{n^2\pi^2\hbar^2}{2m(a+\delta)^2}: n\in \mathbb{N}\}[/tex] (i.e. Bob put up the other end of the well at [tex]a+\delta[/tex]) then Alice is supposed to come meet Bob, but if any are not in this set (say Bob put up the well at [tex]a-\delta[/tex]) then Bob will go back to x=0 to meet Alice.
Would that be a means for instantaneously transmitting a message, or will Alice's particles not "feel" the other end of the well until something propagates back to her, at or below the speed of light?