Travel Faster Than Light: Theory & Experiments

  • Thread starter Enos
  • Start date
In summary, the conversation is discussing the possibility of traveling faster than the speed of light by using a technology that involves charges repelling each other. However, it is explained that this would violate the principles of special relativity, as velocities do not add in the same way in relativity as they do in classical mechanics. This is due to the fact that each observer measures velocity using rulers and clocks that are at rest relative to themselves, leading to a different formula for velocity addition. Therefore, it is not possible to travel faster than the speed of light using this technology without violating relativity.
  • #1
Enos
206
8
I've thought of this last year but I need the opinions of others to see if it is theoretically possible to travel a light year in less then a year. Of course this thought experiment should not violate relativity.

Lets say we create electromagnetic elevator type of technology. Where you have the positive charge on one end and the negative charge on the other and they are off until the timer reaches zero. Each machine repels from the other at a fraction of the speed of light once the timer reaches zero. There are no laws against space receeding faster then light so would this also apply to traveling faster then light using receeding technology or am I missing something in my thought experiment?

Before charge:
{Ground}[][][][][][][][][][]A_________________B

After charge:
{Ground}[]++[]--[]++[]--[]++[]--[]++[]--[]++[]B

Would something happen to the ground or the traveller due to the combined forces?
 
Last edited:
Physics news on Phys.org
  • #2
Enos said:
There are no laws against receeding faster then light
Where did you get this idea? In special relativity, where space is not expanding, it is impossible for anything to move faster than light in any given inertial reference frame. It is possible for an inertial observer to observe two objects moving apart faster than light, even though neither is moving faster than light in his own frame--for example, if I observe one object moving to the left at 0.8c and another moving to the right at 0.7c in another frame, then the distance between them is increasing at 1.5c. However, an observer traveling alongside either object would not observe the other object to be moving away at 1.5c, he would always see the other object moving at less than c.
 
  • #3
I meant no laws against space receeding faster then light. I'll edit my post.
 
  • #4
Enos said:
I've thought of this last year but I need the opinions of others to see if it is theoretically possible to travel a light year in less then a year.

Say you are on Earth and you want to get to some point whose distance from Earth is 1 ly as measured by an Earthbound observer (that's important). You can do that in an arbitrarily short proper time without ever exceeding the speed of light in any frame. That's because the faster you go, the shorter the distance between the Earth and your destination is (thanks to length contraction).
 
  • #5
What if the machines were then swtiched to attract rather then repel. There wouldn't be a twin paradox would there? Perhaps slighty but not the whole effect due to the multiple machines?
 
  • #6
Enos said:
I meant no laws against space receeding faster then light. I'll edit my post.
Are you talking about the expansion of space in general relativity? But two charges repelling each other wouldn't cause space to expand between them, there is nothing about your example that goes beyond special relativity.
 
  • #7
I am talking about the expansion of space. But I am not using the expansion of space but rather that is where I got the idea of traveling faster then light using receeding technology rather then trying to get a vessel to travel faster then light. It is theoretically possible to get an object travel let's say 50,000km/s. I'll use older technology to make it easier to understand what I am trying to say. Ok, we somehow made Hydraulic Lifts to push 50,000km/s and we put 3 lifts over each other.

Before hydraulic push:
}[]{}[]{}[]{A_________B

After hydraulic push:
}--[]--{}--[]--{}--[]--{B

}--[ = 50,000km/s
x6 = 300,000km/s
 
Last edited:
  • #8
Enos said:
I am talking about the expansion of space. But I am not using the expansion of space but rather that is where I got the idea of traveling faster then light using receeding technology rather then trying to get a vessel to travel faster then light.
You seem to be saying that although you were inspired by the fact that things can move apart faster than light if the space between them is expanding, you believe this is possible even when the space between them is not expanding, ie in the static flat spacetime of special relativity. But this is wrong--in special relativity it is not possible for one object to move away from another faster than light, as seen in one of the object's inertial rest frame.
 
  • #9
Is there an explantion on how this is not possible with this thought experiment? Because technically the object is only moving away from the nearest lift while the other lifts are moving away from each other at 50,000km/s. Even though the total of the separation is 300,000km/s the separate machines only travel 50,000km/s away from each other. So this shouldn't violate relativity.
 
  • #10
Enos said:
Is there an explantion on how this is not possible with this thought experiment? Because technically the object is only moving away from the nearest lift while the other lifts are moving away from each other at 50,000km/s. Even though the total of the separation is 300,000km/s the separate machines only travel 50,000km/s away from each other. So this shouldn't violate relativity.
The reason is that velocities don't add the same way in relativity when you switch from one reference frame to another. Say I am on a ship, and I shoot a missile which moves at 0.4c to my right in my rest frame. You are sitting on earth, and you in turn see my ship to be moving at 0.4c to your right in your rest frame, the same direction as the missile. You will not see the missile as moving at 0.4c + 0.4c = 0.8c; instead you must use the formula for addition of velocities in relativity, (u + v)/(1 + uv/c^2), which in this case would give (0.4c + 0.4c)/(1 + 0.16) = 0.69c. As long as u and v are less than or equal to c, their sum according to this formula will also be less than or equal to c. The reason velocity addition works differently in SR than how it does in classical mechanics has to do with the fact that each observer measures velocity=distance/time using rulers and clocks which are at rest relative to themselves (with the clocks synchronized in their frame), which means each observer will see other observers' rulers shrunk relative to their own, their clocks slowed down relative to their own, and their clocks out-of-sync.
 
  • #11
Hmm... Thanks for the input and the link. I was aware that nothing was technically going faster than light and perhaps my choice of words when saying "faster than light" was wrong. But with this type of traveling one can travel across great distances away from Earth and return without a costly time dilation right?
 
  • #12
Enos said:
Hmm... Thanks for the input and the link. I was aware that nothing was technically going faster than light and perhaps my choice of words when saying "faster than light" was wrong. But with this type of traveling one can travel across great distances away from Earth and return without a costly time dilation right?
What do you mean by "this type of travel"? Your scheme just involves objects moving apart, not moving apart and later coming back together. Anyway, if something moves away from the Earth and later comes back, to figure out how long the trip took all that matters is the object's own speed in the Earth's reference frame, the movement of those intermediate lifts is irrelevant. If its speed is some constant v on both legs of the trip, then whatever time t it takes in the Earth's frame, the time dilation will mean it will have taken only [tex]t * \sqrt{1 - v^2/c^2}[/tex] according to the object's own clocks. And if it traveled to a star whose distance was d light years away in the Earth's frame, then the trip there and back will have taken a time of t = 2*d/v years in the Earth's frame. For example, if it was going to a star 100 light years away at 0.5c in the Earth's frame, it won't get back to Earth for 2*100/0.5 = 400 years according to earth-clocks...but according to its own clocks the time would only be [tex]400*\sqrt{1 - 0.5^2}[/tex] = 346.4 years because of time dilation. And if it was going to that same star at 0.999c, it would get back to Earth 2*100/0.999 = 200.2 years later according to earth-clocks, but only [tex]200.2*\sqrt{1 - 0.999^2}[/tex] = 8.95 years later according to its own clocks. The time according to its own clocks can be reduced as much as you like thanks to time dilation, but the time according to earth-clocks for it to travel to a star 100 light years away and back can never be less than 200 years.
 
Last edited:
  • #13
Thanks for the replies, another mistake I made was that the force needed to push this type of machine at that velocity would require more then what is theoretically possible.
 
  • #14
Enos said:
Thanks for the replies, another mistake I made was that the force needed to push this type of machine at that velocity would require more then what is theoretically possible.
The primary factor you need to consider is JesseM's post #10: velocities do not add linearly.

At classical speeds (say, Mach 1) the numbers add the way we expect:
.5Mach + .5Mach +.5Mach = 1.5Mach
.5Mach + .5Mach +.5Mach +.5Mach = 2.0 Mach
.5Mach + .5Mach +.5Mach +.5Mach +.5Mach = 2.5Mach

At relativistic speeds (near speed of light), the numbers do not simpy add:
.5c + .5c +.5c = ~.9c
.5c + .5c +.5c +.5c = ~.99c
.5c + .5c +.5c +.5c +.5c = ~.999c

No matter how many hydraulic lifts you put in your chain, the sum of their speeds will always add up to less than c.
 
Last edited:

FAQ: Travel Faster Than Light: Theory & Experiments

What is the theory behind traveling faster than light?

The theory behind traveling faster than light is based on the concept of wormholes. Wormholes are hypothetical tunnels through space-time that connect two distant points, allowing for faster travel between them. This theory is still highly debated and has not been proven to exist.

Can we currently travel faster than light?

No, according to our current understanding of physics, it is not possible to travel faster than the speed of light. The speed of light is considered to be the universal speed limit, and it would require an infinite amount of energy to accelerate an object to this speed.

Have there been any experiments conducted to test this theory?

Yes, there have been several experiments conducted to test the possibility of traveling faster than light. One of the most famous is the OPERA experiment, which reported faster-than-light neutrino particles. However, these results were later found to be due to a technical error, and no other experiments have been able to replicate these findings.

Are there any potential consequences of traveling faster than light?

If faster-than-light travel were to become possible, it would have significant consequences on our understanding of physics and the laws of the universe. It could also open up the possibility of time travel, as faster-than-light travel would allow for travel through time as well as space.

What advancements in technology would be necessary for faster-than-light travel to become possible?

In order for faster-than-light travel to become possible, we would need to discover and harness new forms of energy that could produce the immense amounts of power needed to accelerate an object to the speed of light. We would also need to develop technology to control and stabilize the wormholes through which we would travel.

Similar threads

Replies
40
Views
3K
Replies
4
Views
906
Replies
27
Views
3K
Replies
45
Views
4K
Replies
21
Views
1K
Replies
3
Views
1K
Replies
8
Views
2K
Back
Top