MHB Triangle Challenge: Proving Inequality of Sides

AI Thread Summary
The discussion centers on proving the inequality $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3$$ for the sides of a triangle, denoted as a, b, and c. Participants suggest that applying the AM-GM inequality could provide a straightforward proof. One user mentions they have a different solution and plans to share it later. The conversation emphasizes the mathematical approach to proving the inequality, highlighting the relevance of established inequalities in triangle geometry. The thread showcases collaborative problem-solving in mathematical proofs.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a\,b$ and $c$ be the sides of a triangle.

Prove that $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3$$.
 
Mathematics news on Phys.org
anemone said:
Let $a\,b$ and $c$ be the sides of a triangle.

Prove that $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3$$.

Let $A=\dfrac{a}{b+c-a},B=\dfrac{b}{a+c-b},C=\dfrac{c}{a+b-c}$.

By the relationship between the arithmetic mean and the harmonic mean we have
$$\dfrac{A+B+C}{3}\ge\dfrac{3}{\dfrac1A+\dfrac1B+\dfrac1C}\Rightarrow A+B+C\ge\dfrac{9}{\dfrac1A+\dfrac1B+\dfrac1C}$$

The rational expression on the RHS is at a maximum when the denominator is at a minimum.
$$\dfrac{b+c-a}{a}+\dfrac{a+c-b}{b}+\dfrac{a+b-c}{c}$$
$$=\dfrac{b+c}{a}-1+\dfrac{a+c}{b}-1+\dfrac{a+b}{c}-1$$
$$=\dfrac ba+\dfrac ab+\dfrac ca+\dfrac ac+\dfrac cb+\dfrac bc-3\quad(1)$$
$$(x-y)^2\ge0$$
$$x^2+y^2\ge2xy$$
$$\dfrac xy+\dfrac yx\ge2$$
hence the minimum of $(1)$ is $3$, so we have
$$A+B+C\ge\dfrac{9}{\dfrac1A+\dfrac1B+\dfrac1C}\implies A+B+C\ge3$$

$\text{Q.E.D.}$
 
anemone said:
Let $a\,b$ and $c$ be the sides of a triangle.

Prove that $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3$$.

if we put $x = b+c-a, y = a+c-b, z = a + b -c$ we get
Given expression
$= \dfrac{1}{2}(\dfrac{y+z}{x} +\dfrac{z+x}{y} + \dfrac{x+y}{z})$
$= \dfrac{1}{2}((\dfrac{y}{x}+ \dfrac{x}{y})+( \dfrac{z}{y} + \dfrac{y}{z}) + ( \dfrac{z}{x} + \dfrac{x}{z}))$
$= \dfrac{1}{2}(((\sqrt{\frac{y}{x}}- \sqrt{\frac{x}{y}})^2+ 2) +((\sqrt{\frac{y}{z}}- \sqrt{\frac{z}{y}})^2+ 2) + ((\sqrt{\frac{z}{x}}- \sqrt{\frac{x}{z}})^2+ 2)))$
$\ge \dfrac{1}{2}(2+2+2)\,or\,3$
 
Thanks both for participating! I actually solved it differently and I will post my solution when I have the time...

By the way, I see that direct use of the AM-GM inequality could bring us to the proof right away in both of the solutions above...:D

Since $a,\,b,\,c>0$ then we have

$=\dfrac ba+\dfrac ab+\dfrac ca+\dfrac ac+\dfrac cb+\dfrac bc-3$

$$\ge 6\sqrt[6]{\dfrac ba\cdot \dfrac ab \cdot \dfrac ca \cdot \dfrac ac \cdot \dfrac cb \cdot \dfrac bc}-3$$

$\ge 6-3=3$

From the substitutions that define $x = b+c-a, y = a+c-b, z = a + b -c$ and since $a,\,b$ and $c$ are sides of triangle, we have $x,\,y,\,z\ge 0$ so that

$ \dfrac{1}{2}((\dfrac{y}{x}+ \dfrac{x}{y})+( \dfrac{z}{y} + \dfrac{y}{z}) + ( \dfrac{z}{x} + \dfrac{x}{z}))$

$\ge \dfrac{1}{2}\left(6\sqrt[6]{\dfrac{y}{x}\cdot \dfrac{x}{y} \cdot \dfrac{z}{y} \cdot \dfrac{y}{z} \cdot \dfrac{z}{x} \cdot \dfrac{x}{z}}\right)$

$\ge 3$
 
My solution:

$$\begin{align*}\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}&=\frac{a^2}{a(b+c)-a^2}+\frac{b^2}{b(a+c)-b^2}+\frac{c^2}{c(a+b)-c^2}\\&\ge 4\left(\left(\frac{a}{b+c}\right)^2+\left(\frac{b}{c+a}\right)^2+\left(\frac{c}{a+b}\right)^2\right)\,\,\text{since}\,\,a^2+\frac{(b+c)^2}{4}\ge a(b+c)\\&\ge 4\left(\frac{\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2}{3}\right)\,\,\text{since}\,\,3(x^2+y^2+z^2)\ge (x+y+z)^2\\&\ge 4\left(\frac{\left(\frac{3}{2}\right)^2}{3}\right)\,\,\text{from the Nesbitt's inequality}\\&\ge 3\end{align*}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top