MHB Triangle Inequality: $a^4-1, a^4+a^3+2a^2+a+1, 2a^3+a^2+2a+1$

AI Thread Summary
For all values of \( a > 1 \), the sides \( a^4 - 1 \), \( a^4 + a^3 + 2a^2 + a + 1 \), and \( 2a^3 + a^2 + 2a + 1 \) can form a triangle, satisfying the triangle inequality. The discussion highlights the elegance of the solution provided by Kaliprasad and appreciates the challenge posed by Anemone. Participants express enjoyment in solving and discussing the problem, emphasizing the positive community interaction. The problem serves as a good example of applying mathematical principles to verify triangle formation. Overall, the thread showcases a collaborative effort in exploring mathematical concepts.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that for all $a>1$, there is a triangle with sides $a^4-1$, $a^4+a^3+2a^2+a+1$, and $2a^3+a^2+2a+1$.
 
Mathematics news on Phys.org
anemone said:
Show that for all $a>1$, there is a triangle with sides $a^4-1$, $a^4+a^3+2a^2+a+1$, and $2a^3+a^2+2a+1$.

Let the Lengths of sides of triangle be
$x = a^4 – 1$
$y = a^4 + a^3 + 2a^2 + a +1$
$z= 2a^3 + a^2 + 2a + 1$

clearly x < y
now we need to see if y < z or y = z or y > z
$y – z = a^4 – a^3 + a^2 – a = a^3(a-1) +a (a-1) >0$
so y – z >0
so y is the longer side,
now if we prove that x + z > y then we are through
$x + z – y = a^3 – a^2 + a – 1 = (a^2+1)(a-1) > 0$

hence proved
 
Last edited:
Great problem, Anemone! :D

And a very elegant solution, Kaliprasad! :D
 
DreamWeaver said:
Great problem, Anemone! :D

It feels quite nice to receive such a compliment from time to time at MHB for my posting of the challenge problem(s)!:p(Sun)
 
anemone said:
Show that for all $a>1$, there is a triangle with sides $a^4-1$, let :$a^4+a^3+2a^2+a+1$, and $2a^3+a^2+2a+1$.
let:
$x=a^4-1=(a^2+1)(a^2-1)$
$y=a^4+a^3+2a^2+a+1=(a^2+a+1)(a^2+1)$
and
$z=2a^3+a^2+2a+1=(a^2+1)(2a+1)$
if $x,y,z $ can form a triangle ,then :
$xx=a^2-1$
$yy=a^2+a+1$
$zz=2a+1$
can also form a new but smaller triangle (by shrinking $a^2+1$ fold)
again $yy$ is the longest
now we must prove $xx+zz>yy$ if $a>1$
but $xx+zz-yy=a^2-1+2a+1-a^2-a-1=a-1>0(\,\, if \,\, a>1)$
and the proof is done
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top