Trouble with metric. Holonomic basis and the normalised basis

In summary, the discussion on "Trouble with metric. Holonomic basis and the normalized basis" explores the complexities associated with metric tensors in differential geometry. It highlights the distinction between holonomic and non-holonomic bases, where holonomic bases relate to coordinate systems that allow for straightforward integration and differentiation, while normalized bases are adjusted to maintain unit lengths or specific properties. The challenges arise when attempting to reconcile these concepts in practical applications, leading to potential inconsistencies in calculations and interpretations within various geometric frameworks.
  • #1
GR191511
76
6
TL;DR Summary
about metric
##df=\frac {\partial f}{\partial r} dr+\frac {\partial f}{\partial \theta}d\theta\quad
\nabla f=\frac{\partial f}{\partial r}\vec{e_r} +\frac{1}{r}\frac{\partial f}{\partial \theta }\vec{e_\theta }##
On the other hand ## g_{rr}=1\:g_{r\theta}=0\:g_{\theta r}=0\;g_{\theta\theta}=r^2\;##So According to##v_2=v^{\alpha} g_{\alpha 2}\;then\; (df)_{\theta}=\frac{\partial f}{\partial r}*0+\frac{1}{r}\frac{\partial f}{\partial \theta }*r^2=r\frac{\partial f}{\partial \theta }\neq\frac{\partial f}{\partial \theta }##Where have I gone wrong?
 
Last edited:
Physics news on Phys.org
  • #2
Don't get confused between the holonomic basis ##(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta})## and the normalised basis ##(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta})##, or similarly the holonomic covector basis ##(dr, d\theta)## and the normalised covector basis ##(dr, r d\theta)##. If you want to use a normalised basis then remember the metric will be ##g_{\hat{r} \hat{r}} = g_{\hat{\theta} \hat{\theta}} = 1##.
 
  • Like
Likes GR191511, jedishrfu and berkeman
  • #3
ergospherical said:
Don't get confused between the holonomic basis ##(\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta})## and the normalised basis ##(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta})##, or similarly the holonomic covector basis ##(dr, d\theta)## and the normalised covector basis ##(dr, r d\theta)##. If you want to use a normalised basis then remember the metric will be ##g_{\hat{r} \hat{r}} = g_{\hat{\theta} \hat{\theta}} = 1##.
Thank you! I tried and I found ##g_{\hat{\theta}\hat{\theta}}=1## apply to a transition from the normalised basis ##(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta})## to the holonomic covertor basis ##(dr, d\theta)## ...But when can I use ##g_{\hat{\theta}\hat{\theta}}=r^2## ?
 
  • #4
In the holonomic basis ##g_{\theta \theta} = r^2##. (I used the hat on ##\hat{\theta}## to denote components in the normalised basis, as opposed to no hat for components in the holonomic basis).
 
  • Like
Likes GR191511
  • #5
ergospherical said:
In the holonomic basis ##g_{\theta \theta} = r^2##. (I used the hat on ##\hat{\theta}## to denote components in the normalised basis, as opposed to no hat for components in the holonomic basis).
Thanks! Does ##g_{\theta\theta}=r^2## apply to any transition?from the holonomic basis to the normalised covector basis? I have already checked,it doesn't.
 
  • #6
##df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \theta} d\theta \equiv (df)_r dr + (df)_{\theta} d\theta##
Equivalently
##df = \frac{\partial f}{\partial r} dr + \frac{1}{r} \frac{\partial f}{\partial \theta} (r d\theta) \equiv (df)_{\hat{r}} dr + (df)_{\hat{\theta}} (r d\theta)##
i.e. ##(df)_{\hat{\theta}} = \frac{1}{r} \frac{\partial f}{\partial \theta}## in the normalised basis.

Why are the basis vectors normalised by a factor of ##r##? Consider ##g(\frac{1}{r} \frac{\partial}{\partial \theta}, \frac{1}{r} \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g_{\theta \theta} = \frac{1}{r^2} r^2 = 1##, so this is the correct normalisation.
Meanwhile the corresponding basis covector is ##rd\theta## because ##r d\theta (\frac{1}{r} \frac{\partial}{\partial \theta}) = d\theta(\frac{\partial}{\partial \theta}) = 1##.
 
  • Like
Likes GR191511
  • #7
ergospherical said:
##df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \theta} d\theta \equiv (df)_r dr + (df)_{\theta} d\theta##
Equivalently
##df = \frac{\partial f}{\partial r} dr + \frac{1}{r} \frac{\partial f}{\partial \theta} (r d\theta) \equiv (df)_{\hat{r}} dr + (df)_{\hat{\theta}} (r d\theta)##
i.e. ##(df)_{\hat{\theta}} = \frac{1}{r} \frac{\partial f}{\partial \theta}## in the normalised basis.

Why are the basis vectors normalised by a factor of ##r##? Consider ##g(\frac{1}{r} \frac{\partial}{\partial \theta}, \frac{1}{r} \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}) = \frac{1}{r^2} g_{\theta \theta} = \frac{1}{r^2} r^2 = 1##, so this is the correct normalisation.
Meanwhile the corresponding basis covector is ##rd\theta## because ##r d\theta (\frac{1}{r} \frac{\partial}{\partial \theta}) = d\theta(\frac{\partial}{\partial \theta}) =
Thank you!
##df=\frac {\partial f} {\partial r}dr+\frac{1}{r}\frac {\partial f} {\partial \theta}rd\theta## and
##(dr,rd\theta ) \begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix} \begin{pmatrix}
dr \\
rd\theta \\
\end{pmatrix}\Rightarrow g_{rr}=g_{\theta\theta}=g^{rr}=g^{\theta\theta}=1\Rightarrow##
##(\nabla f)^\theta=\frac{1}{r}\frac {\partial f} {\partial \theta}*g^{\theta\theta}=\frac{1}{r}\frac {\partial f} {\partial \theta}\;and\;(\nabla f)^r=\frac {\partial f} {\partial r}##
##\Rightarrow \nabla f=\frac {\partial f} {\partial r}\vec e_r+\frac{1}{r}\frac {\partial f} {\partial \theta}(\vec e_\theta\;or\;\frac{\vec e_\theta}{r})?if\;it\;is\;\frac{\vec e_\theta}{r}\;then##
##\nabla f=\frac {\partial f} {\partial r}\vec e_r+\frac{1}{r^2}\frac {\partial f} {\partial \theta}\vec e_\theta## it is wrong.But if it is##\;\vec e_\theta##...the##\;\vec e_\theta## is not a dual basis vector of##\;rd\theta##.
 

Similar threads

Replies
12
Views
4K
Replies
36
Views
2K
Replies
7
Views
3K
Replies
11
Views
3K
Replies
14
Views
1K
Replies
11
Views
2K
Back
Top