Troubleshooting a Boost Circuit: Voltage Rise & Gate Issues

AI Thread Summary
The discussion revolves around troubleshooting issues in a boost circuit design, specifically related to sudden voltage rises and gate drive problems with MOSFETs. Users note that the voltage rises unexpectedly with varying duty cycles and that the MOSFET gate pulses behave like charging and discharging capacitors. Recommendations include using a dedicated gate driver IC or discrete components to manage the high gate capacitance effectively, especially at a frequency of 300kHz. Additionally, the feasibility of stepping up from a 5V input to a 100V output is questioned, suggesting that a transformer or flyback topology may be more efficient than a simple buck converter. Participants encourage sharing the circuit schematic for more tailored advice.
core7916
Messages
71
Reaction score
3
Hello. I am creating a boost circuit and there is a lot of problems while testing.
Before creating circuit i have simulated circuit in modelsim.
Problems.
1. Sudden voltage rise from 40% to 50 % dury cycle. ( i am checking each duty cycle )
2. When applying a gate voltage to mosfet the the pulse is behave like charging and discharging (like capacitor charge and discharge). In 90% duty cycle the pulse is not reaching zero, similarly in 10 % pulse is not reaching pulse voltage ( 5v - from function generator). Frq= 300khz
* I am designing 5v input to 100v output.
Why this is happenig ?
* Should i use any other driving component to use drive the gate of mosfet?.
 
Engineering news on Phys.org
core7916 said:
When applying a gate voltage to mosfet the the pulse is behave like charging and discharging (like capacitor charge and discharge).
A power MOSFET is made from many MOSFETs in parallel. There is a very high total gate input capacitance that must be charged quickly. With a high output voltage, the miller capacitance between the gate and drain may become significant.

core7916 said:
* Should i use any other driving component to use drive the gate of mosfet?.
Yes. The driver you need would depend on your choice of MOSFET and the circuit employed. It might only need a couple of BJTs to drive the gate.
Please post your circuit diagram.
 
core7916 said:
Sudden voltage rise from 40% to 50 % dury cycle.
By my limited experience such thing often means continuous/discontinuous operation mode transition. Check your knowledge/design regarding operation modes.

core7916 said:
* Should i use any other driving component to use drive the gate of mosfet?.
At 300kHz, likely yes. There are some ICs for this specific role as 'gate driver'. You can do it with discrete components too, but far more simple with ICs.

core7916 said:
* I am designing 5v input to 100v output.
That feels like a bit too big step to do it efficiently. A transformer might be required, instead of a simple buck converter.
 
core7916 said:
Hello. I am creating a boost circuit and there is a lot of problems while testing.
Can you upload a copy of your schematic please? Use the "Attach files" link below the Edit window to upload a PDF or JPEG copy of your schematic. Thank you.
 
Rive said:
That feels like a bit too big step to do it efficiently. A transformer might be required, instead of a simple buck converter.
Yes, easier with a flyback topology. You have to have big magnetics anyway, might as well put on another winding (or tap) and get back to a more reasonable duty cycle. Your peak to average current ratios will be stressful on things. OTOH, it can be done with a buck converter.
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top