Two candles making shadows of one another on opposite walls

In summary, the scenario describes two candles positioned in such a way that their light creates shadows of each other on walls that face them. This interplay of light and shadow illustrates the relationship between the two candles, emphasizing how their presence influences the environment around them.
  • #1
brotherbobby
702
163
Homework Statement
Two candles of equal height ##h## at the initial moment are at a distance ##a## from each other. The distance between each candle and the nearest wall is also ##a## (see figure below). With what speed will the shadows of the candles move along the walls if one candles burns down during a time ##t_1## and the other during a time ##t_2##?
Relevant Equations
1. (Uniform) Velocity of a point along a line : ##v = \dfrac{dx}{dt}##

2. For two similar right angled triangles of heights ##h_1## and ##h_2## and bases ##b_1## and ##b_2## : ##\quad\dfrac{h_2}{b_2}=\dfrac{h_2}{b_2}##
1715325726667.png


I copy and paste the problem as it appears in the text along with the diagram alongside. It is clear from the image that the base of the shadows don't move - only their tops would move either up or down. Let us assume the time ##t_1>t_2##, implying that candle 1 burns at a slower rate. How would things appear after a time of burning ##t## for both candles?

1715325865862.png

I draw my own diagram, showing the situation after a time ##t##. The rate at which the candles burn ##\small{r_i=\dfrac{h}{t_i}}##. The height of candle 1 after a time ##t## : ##\small{h_1 = h-r_1t=h-\dfrac{h}{t_1}t\Rightarrow h_1=h\left(1-\dfrac{t}{t_1}\right)\quad (1)}.## Likewise, ##\small{h_2= h\left(1-\dfrac{t}{t_2}\right)\quad (2)}.##

If the shadows have lengths ##s_1, s_2##, I have to find their velocities as the candles burn, i.e. ##\boxed{\dot{s_1}=?\;,\;\dot{s_2}=?}##.

In ##\triangle's## CDO and EFO, we have (by similarity) : ##\small{\dfrac{h_1-s_2}{2a}=\dfrac{h_2-s_2}{a}\Rightarrow h_1-s_2 = 2(h_2-s_2)\Rightarrow s_2=2h_2-h_1}=2h\left(1-\dfrac{t}{t_2}\right)-h\left(1-\dfrac{t}{t_1}\right)## upon using equations ##(1),(2)## above.
This simplifies to ##\small{s_2=h+h\left(\dfrac{1}{t_1}-\dfrac{2}{t_2}\right)t\Rightarrow \dot{s}_2=h\left(\dfrac{1}{t_1}-\dfrac{2}{t_2}\right)}\Rightarrow \boxed{\boldsymbol{\dot{s}_2=\dfrac{h}{t_1t_2}(t_2-2t_1)}}\quad (3)##
Since ##t_1>t_2,\; \dot{s}_2=\text{-ve}##.

From similar ##\triangle's## ABO and EFO, ##\small{\dfrac{s_1-s_2}{3a}=\dfrac{h_2-s_2}{a}\Rightarrow s_1-s_2=3(h_2-s_2)}##
##\small{\Rightarrow s_1=3h_2-2s_2=3\left(1-\dfrac{t}{t_2}\right)-2h-2h\left(\dfrac{1}{t_2}-\dfrac{2}{t_2}\right)t}## after using equations ##(2),(3)##.

This reduces to ##\small{s_1=h-\dfrac{2h}{t_1}t+\dfrac{h}{t_2}t\Rightarrow \dot{s}_1=-\dfrac{2h}{t_1}+\dfrac{h}{t_2}}\Rightarrow \boxed{\boldsymbol{\dot{s}_1=\dfrac{h}{t_1t_2}(t_1-2t_2)}}\quad (4)##
1715325971780.png


My answers miss those of the text by a change of sign.

Request : Where do you think am mistaken?
 
Last edited:
Physics news on Phys.org
  • #2
You have defined the velocity in the opposite direction to the text. This will make it differ by a sign.

The problem also asks for speed, not velocity, so technically the correct answer is the absolute value of these expressions (which make them the same). The difference being that your expressions will always have (at least) one negative value.
 
  • #3
Orodruin said:
You have defined the velocity in the opposite direction to the text. This will make it differ by a sign.
I think I should look into first myself and then post the text solution. I measured distances from the bottom up, taking the base as point 0.

1715327662116.png


Yes you were right. They are taking distances from the top down.

Orodruin said:
The difference being that your expressions will always have (at least) one negative value.

Yes that is what am not sure of. Let us have the expressions again, given my conventions.

Shadow ##s_1## moves with a speed ##\quad\small{\boxed{\boldsymbol{\dot{s}_1=\dfrac{h}{t_1t_2}(t_1-2t_2)}}}##

Shadow ##s_2## moves with a speed ##\quad\small{\boxed{\boldsymbol{\dot{s}_2=\dfrac{h}{t_1t_2}(t_2-2t_1)}}}##

I assumed ##t_1>t_2##. However, if ##t_1<2t_2\Rightarrow \dot{s}_1=-ve##. Either way, ##\dot{s}_2=-ve##.

So it could be that both shadows are moving down?
 
  • #4
brotherbobby said:
So it could be that both shadows are moving down?
Of course, consider the case when both candles burn at the same speed. Then both shadows will move down at that speed.
 

FAQ: Two candles making shadows of one another on opposite walls

What causes the shadows of two candles to appear on opposite walls?

The shadows of two candles appear on opposite walls due to the light emitted by each candle. When a candle burns, it produces light that travels in straight lines. If there are obstacles, such as walls, in the path of the light, the light is blocked, creating shadows on the surfaces opposite to the candles.

How does the distance between the candles and the walls affect the shadows?

The distance between the candles and the walls significantly affects the size and intensity of the shadows. If the candles are closer to the walls, the shadows will be smaller and sharper. Conversely, if the candles are farther away, the shadows will be larger and more diffuse due to the spreading of light over a greater distance.

What factors influence the shape of the shadows cast by the candles?

The shape of the shadows is influenced by several factors, including the shape and size of the candles, the angle at which the light is emitted, and the texture of the surfaces on which the shadows are cast. Additionally, the presence of any objects in the vicinity can alter the shape of the shadows by blocking or redirecting the light.

Can the color of the candle affect the shadows it casts?

Yes, the color of the candle can affect the shadows it casts. Different colored candles emit light of varying wavelengths, which can influence the hue and intensity of the shadows. For instance, a brightly colored candle may cast a more vibrant shadow compared to a darker candle, which may produce a more muted shadow.

What happens to the shadows if one candle is extinguished?

If one candle is extinguished, the shadow cast by that candle will disappear, while the shadow from the remaining lit candle will still be present. The extinguished candle will no longer emit light, thus eliminating its shadow on the wall. The dynamics of light and shadow will change, potentially altering the appearance of the remaining shadow as well.

Back
Top