- #71
Tanya Sharma
- 1,540
- 135
Suppose I do not consider this two body problem as a one body problem .
Let r1 be the distance of M(sun) from CM and r2 be distance of m(planet) from CM.Then ## r_1 = \frac{mD}{m+M}## and ## r_2 = \frac{MD}{m+M}##
$$ \frac{GMm}{D^2} = \frac{mv^2}{r_2} $$
$$ \frac{GMm}{D^2} = \frac{m(m+M)v^2}{MD} $$
$$ v^2 = \frac{GM^2}{(m+M)D} $$
$$ v = \sqrt{\frac{GM}{(1+\frac{m}{M})D}} $$
Again ## 1+\frac{m}{M}≈ 1 ##
So,
$$ v = \sqrt{\frac{GM}{D}} $$
Is this analysis correct ?
Let r1 be the distance of M(sun) from CM and r2 be distance of m(planet) from CM.Then ## r_1 = \frac{mD}{m+M}## and ## r_2 = \frac{MD}{m+M}##
$$ \frac{GMm}{D^2} = \frac{mv^2}{r_2} $$
$$ \frac{GMm}{D^2} = \frac{m(m+M)v^2}{MD} $$
$$ v^2 = \frac{GM^2}{(m+M)D} $$
$$ v = \sqrt{\frac{GM}{(1+\frac{m}{M})D}} $$
Again ## 1+\frac{m}{M}≈ 1 ##
So,
$$ v = \sqrt{\frac{GM}{D}} $$
Is this analysis correct ?