Two wave superposition with different wavelength , amplitude and frequ

AI Thread Summary
The discussion focuses on the superposition of two waves with different wavelengths, amplitudes, and frequencies, represented by the equations u1(x,t) and u2(x,t). The user seeks to demonstrate amplitude modulation and expresses difficulty in relating the amplitudes A1 and A2. A suggestion is made to visualize the problem using a right triangle to express the amplitudes in terms of a resultant amplitude A and an angle θ. The user explores the possibility of proving amplitude modulation without merging the cosine terms by using vector representation of the amplitudes. The conversation highlights the complexities of wave superposition and the mathematical approaches to analyze it.
ptolomeo
Messages
3
Reaction score
0

Homework Statement


Hi

Two wave superposition with different wavelength , amplitude and frequency

u1(x,t)=A1cos(k1x+w1t)
u2(x,t)=A2cos(k2x+w2t)

a)Show that an amplitude modulation is obtained

Homework Equations



No relevant equations

The Attempt at a Solution



u=u1+u2=A1cos(k1x+w1t)+A2cos(k2x+w2t)

and now i don't know what to do, is there any way to relate A1 and A2

I searched in the internet and I found Fresnell method which can solve it for two waves of the tipe:
u1=u2=A1cos(w1t)
u2=A1cos(w2t)=A1cos(w1t+phi)

but in my case I don't think I can do that because there are 2 variables in the cos


Its my first post so thanks
pd: sorry for my bad english
 
Physics news on Phys.org
Try this: Draw a right triangle with the length of one leg equal to ##A_1##, the length of the other leg equal to ##A_2##, and with hypotenuse equal to ##\sqrt{A_1^2+A_2^2}##. Then express ##A_1## and ##A_2## in terms of ##A## and an angle ##\theta##, appropriately defined. That might get it into a form you can more easily work with.

I'm just making a suggestion. I haven't actually worked the problem out, so the suggestion may not turn out to be useful.
 
Expresing in terms of A=√A21+A22

I arrive to the expresion

u(x,t)=(A/sinθ)(tan(θ)cos(k1x+w1t)+cos(k2x+w2t)) I don't see how it can help :/ but thanks

Maybe I can prove that there's a Amplitude modulation without merging the cos
 
Waves.png


I think i found a way to solve it so if i make two vectors where A1 and A2 is the module of each vector I just have to sum them and then find the angle of the resulting vector.

Where θ1=k1x-w1t
θ2=k2x-w2t
u1=A1cosθ1
u2=A2cosθ2

And alfa=(θ1-θ2)/2+θ2=θ1+θ2/2
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top