- #36
- 10,877
- 423
Ah, that's actually very helpful. I just re-read a few statements from the part of Streater & Wightman where they define tempered distributions, keeping in mind what you just said, and suddenly what they're saying makes a lot more sense. Unfortunately I have to go to bed now, but I'll continue tomorrow.strangerep said:Note that each of these norms defines a subspace. I.e., the sequence of norms defines
a sequence of spaces, each densely nested in the previous (larger) one. So "continuity"
applies in the context of the norm topology on each subspace. The tempered distribution
case applies to the (dual of) the "inductive limit" of this sequence of spaces (afaiu).