Understanding Basis Choices in Quantum Mechanics

  • Thread starter Thread starter Verdict
  • Start date Start date
  • Tags Tags
    Basis
AI Thread Summary
The discussion focuses on understanding the hyperfine interaction between two spin-1 particles from a Hamiltonian perspective, specifically using the equation H = A S_{z}⊗I_{z}. The main concern is determining the correct column of the matrices that correspond to different spin states, as this is crucial for distinguishing between the spins of the particles in an experimental setup. There is a realization that the choice of basis may be arbitrary, complicating the identification of specific spin states. Ultimately, the question is clarified to seek the eigenvectors corresponding to the columns of the Pauli matrices for a spin-1 particle. The thread concludes with an acknowledgment of the initial vagueness of the question and a resolution of the confusion regarding the matrix representation.
Verdict
Messages
114
Reaction score
0

Homework Statement


Alright, so this is not exactly a guided homework question. It is a rather intricate problem consisting of many steps, but one of these steps comes down to working out the hyperfine interaction between two spin 1 particles, from a hamiltonian point of view. From what I have been given, in this particular setup it can be simplified to the equation below:

Homework Equations


H = A S_{z}⊗I_{z}

where S and Z are angular momentum operators corresponding to the Z axis.

The Attempt at a Solution


Alright, so my problem is how I go about knowing which column of each matrix correspons to what. Does the first column correspond to the spin being 0, 1 or -1, basically. I have illustrated my question with the picture below, working out a specific case, where I indicate the spin of the first particle by mS and the spin of the second particle by mI. The reason for why the ordering is important to me is because I want to perform an experiment in which I have to be able to distinguish between the second particle being spin 1, 0 or -1, and the only way I can think of doing so in my specific setup is if I know which values of the hamiltonian correspond to which combination of (spin particle 1, spin particle 2)

2z6zbqa.jpg


Somehow I seem to remember that this choice of basis is arbitrary, which means that no specific one corresponds to spin 1, 0, or -1. This would be problematic, as I need a clear way to distinguish them from one another.

Edit: I understand that my question is a bit vague. It basically boils down to if the numbers I put under the matrix are set, or if they can be chosen arbitrarily.
 
Last edited:
Physics news on Phys.org
I don't understand where you are going with this. By if you have hyperfine interaction, then ##m_S## and ##m_I## are no longer good quantum numbers and cannot be used to describe eigenstates of the system.
 
Hmm. Well, I suppose I should have added more context, as looking back at it it is indeed not clear at all what I am trying to say. In the end my question boiled down to which eigenvectors corresponded to what columns of the pauli matrices for a spin 1 particle, which is easily answered. But thank you for giving my question some thought, and I apologize for wasting your time!
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top