- #36
- 22,221
- 13,815
You also need to satisfy ##\nabla \times \vec E = 0## and with that ##\vec E_0## generallytom.stoer said:The solution can be much more complex b/c you can add any ##\vec{E}_0## with ##\nabla\vec{E}_0 = 0##, e.g.
$$\vec{E}_0 = (0,y\,f(x),-z\,f(x))$$
$$
\nabla \times \vec E = f'(x) [z \vec e_y + y \vec e_z] \neq 0.
$$
Edit: I will give you that you can add any divergence and curl free field.
Last edited: