- #1
Aleolomorfo
- 73
- 4
Hello everybody!
I have a question regarding the first step of the quantistic proof of the Goldstone's theorem. Defining
$$a(t) = \lim_{V \rightarrow +\infty} {\langle \Omega|[Q_v(\vec{x},t),A(\vec{y})]| \Omega \rangle}$$
where ##|\Omega\rangle## is the vacuum state of the Fock space, ##Q_v## is the conserved charge of the relative current ##J^\mu## and ##A## is a local operator. The first step is to prove that actually ##a(t)## does not depend on ##t##.
$$\frac{da(t)}{dt} = \lim_{V \rightarrow +\infty} \partial_t {\langle \Omega|[Q_V(\vec{x},t),A(\vec{y})]| \Omega \rangle} = $$
$$= \lim_{V \rightarrow +\infty} \partial_t \int_V d\vec{x} {\langle \Omega|[J^0(\vec{x},t),A(\vec{y})]| \Omega \rangle} = $$
$$= \lim_{V \rightarrow +\infty} \int_V d\vec{x} {\langle \Omega|[\partial_t J^0(\vec{x},t),A(\vec{y})]| \Omega \rangle} = $$
I substitute the conservation of the current ##\partial_\mu J^\mu##
$$= - \lim_{V \rightarrow +\infty} \int_V d\vec{x} {\langle \Omega|[\nabla\cdot \vec{J}(\vec{x},t),A(\vec{y})]| \Omega \rangle} = $$
Stoke's theorem
$$= - \lim_{V \rightarrow +\infty} \int_S d\vec{n} {\langle \Omega|[ \vec{J}(\vec{x},t),A(\vec{y})]| \Omega \rangle} = $$
The conclusion is: the commutator is zero since we are doing the limit ##V \rightarrow +\infty##, this means that ##|\vec{x}-\vec{y}| \rightarrow +\infty##.
I do not understand two things.
The first one is the last sentence, I do not see why sending ##|\vec{x}-\vec{y}| \rightarrow +\infty## means that the commutator is zero.
Secondly, essentialy in this proof we change ##J^0## to ##\vec{J}##, why the same argument made about ##\vec{J}## to sent the volume to ##+\infty## was not used to ##J^0##?
Thanks in advance for the help!
I have a question regarding the first step of the quantistic proof of the Goldstone's theorem. Defining
$$a(t) = \lim_{V \rightarrow +\infty} {\langle \Omega|[Q_v(\vec{x},t),A(\vec{y})]| \Omega \rangle}$$
where ##|\Omega\rangle## is the vacuum state of the Fock space, ##Q_v## is the conserved charge of the relative current ##J^\mu## and ##A## is a local operator. The first step is to prove that actually ##a(t)## does not depend on ##t##.
$$\frac{da(t)}{dt} = \lim_{V \rightarrow +\infty} \partial_t {\langle \Omega|[Q_V(\vec{x},t),A(\vec{y})]| \Omega \rangle} = $$
$$= \lim_{V \rightarrow +\infty} \partial_t \int_V d\vec{x} {\langle \Omega|[J^0(\vec{x},t),A(\vec{y})]| \Omega \rangle} = $$
$$= \lim_{V \rightarrow +\infty} \int_V d\vec{x} {\langle \Omega|[\partial_t J^0(\vec{x},t),A(\vec{y})]| \Omega \rangle} = $$
I substitute the conservation of the current ##\partial_\mu J^\mu##
$$= - \lim_{V \rightarrow +\infty} \int_V d\vec{x} {\langle \Omega|[\nabla\cdot \vec{J}(\vec{x},t),A(\vec{y})]| \Omega \rangle} = $$
Stoke's theorem
$$= - \lim_{V \rightarrow +\infty} \int_S d\vec{n} {\langle \Omega|[ \vec{J}(\vec{x},t),A(\vec{y})]| \Omega \rangle} = $$
The conclusion is: the commutator is zero since we are doing the limit ##V \rightarrow +\infty##, this means that ##|\vec{x}-\vec{y}| \rightarrow +\infty##.
I do not understand two things.
The first one is the last sentence, I do not see why sending ##|\vec{x}-\vec{y}| \rightarrow +\infty## means that the commutator is zero.
Secondly, essentialy in this proof we change ##J^0## to ##\vec{J}##, why the same argument made about ##\vec{J}## to sent the volume to ##+\infty## was not used to ##J^0##?
Thanks in advance for the help!