- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Wave)I am looking at the proof of Hensel's Lemma.
Hensel's Lemma:
Let $F(x)=a_0+a_1x+ \dots+ a_n x^n \in \mathbb{Z}_p[x]$.
We suppose that there is a p-adic $\alpha_1 \in \mathbb{Z}$ such that:
$$F(\alpha_1) \equiv 0 \mod p\mathbb{Z}_p$$
and
$$F'(\alpha_1) \not\equiv 0 \mod p\mathbb{Z}_p$$
Then, $\exists$ a p-adic number $\alpha \in \mathbb{Z}_p$, such that $F(\alpha)=0$.
Proof:
We will prove the existence of a root $\alpha$ in $\mathbb{Z}_p$, constructing a sequence Cauchy, $\alpha_1, \alpha_2, \dots$, that converges to $\alpha$.
For each $n \geq 1$, we will construct $\alpha_n$, such that:
1. $F(\alpha_n) \equiv 0 \mod p^n \mathbb{Z}_p$
2. $a_n \equiv a_{n+1} \pmod{p^{n+1}}$
For $a_2$:
$$F(\alpha_2) \equiv 0 \mod p^2 \mathbb{Z}_p$$
$$\alpha_1 \equiv \alpha_2 \pmod p$$
$$\alpha_1 \equiv \alpha_2 \pmod p \Rightarrow \alpha_2=\alpha_1+pb_1$$
$$F(\alpha_1)+F'(\alpha_1)b_1p$$
Therefore, $F(\alpha_2)=F(\alpha_1+pb_1)=F(\alpha_1)+F'(\alpha_1)b_1p+(\text{ terms in }p^n \mathbb{Z}_p, \forall n \geq 2)$
We want $F(\alpha_2) \equiv 0 \pmod{p^2 \mathbb{Z}_p}$
So, it must be: $F(\alpha_1)+F'(\alpha_2)b_1 p \equiv 0 \pmod{p^2}$
From $F(\alpha_2) \equiv 0 \pmod{p^2 \mathbb{Z}_p}$, we conclude that $$F(\alpha_1)+F'(\alpha_1)b_1p+(\text{ terms in }p^n \mathbb{Z}_p, \forall n \geq 2) \equiv 0 \pmod{p^2 \mathbb{Z}_p}$$
but how do we conclude that it must stand: $F(\alpha_1)+F'(\alpha_2)b_1 p \equiv 0 \pmod{p^2}$ ?
Hensel's Lemma:
Let $F(x)=a_0+a_1x+ \dots+ a_n x^n \in \mathbb{Z}_p[x]$.
We suppose that there is a p-adic $\alpha_1 \in \mathbb{Z}$ such that:
$$F(\alpha_1) \equiv 0 \mod p\mathbb{Z}_p$$
and
$$F'(\alpha_1) \not\equiv 0 \mod p\mathbb{Z}_p$$
Then, $\exists$ a p-adic number $\alpha \in \mathbb{Z}_p$, such that $F(\alpha)=0$.
Proof:
We will prove the existence of a root $\alpha$ in $\mathbb{Z}_p$, constructing a sequence Cauchy, $\alpha_1, \alpha_2, \dots$, that converges to $\alpha$.
For each $n \geq 1$, we will construct $\alpha_n$, such that:
1. $F(\alpha_n) \equiv 0 \mod p^n \mathbb{Z}_p$
2. $a_n \equiv a_{n+1} \pmod{p^{n+1}}$
For $a_2$:
$$F(\alpha_2) \equiv 0 \mod p^2 \mathbb{Z}_p$$
$$\alpha_1 \equiv \alpha_2 \pmod p$$
$$\alpha_1 \equiv \alpha_2 \pmod p \Rightarrow \alpha_2=\alpha_1+pb_1$$
$$F(\alpha_1)+F'(\alpha_1)b_1p$$
Therefore, $F(\alpha_2)=F(\alpha_1+pb_1)=F(\alpha_1)+F'(\alpha_1)b_1p+(\text{ terms in }p^n \mathbb{Z}_p, \forall n \geq 2)$
We want $F(\alpha_2) \equiv 0 \pmod{p^2 \mathbb{Z}_p}$
So, it must be: $F(\alpha_1)+F'(\alpha_2)b_1 p \equiv 0 \pmod{p^2}$
From $F(\alpha_2) \equiv 0 \pmod{p^2 \mathbb{Z}_p}$, we conclude that $$F(\alpha_1)+F'(\alpha_1)b_1p+(\text{ terms in }p^n \mathbb{Z}_p, \forall n \geq 2) \equiv 0 \pmod{p^2 \mathbb{Z}_p}$$
but how do we conclude that it must stand: $F(\alpha_1)+F'(\alpha_2)b_1 p \equiv 0 \pmod{p^2}$ ?