Understanding the Differences between Euler Versus Tait Angles

  • Thread starter Thread starter Trying2Learn
  • Start date Start date
  • Tags Tags
    Angles Euler
AI Thread Summary
Tait-Bryan angles and Euler angles differ primarily in their axis rotation definitions, with Tait-Bryan angles representing distinct yaw, pitch, and roll rotations, while Euler angles involve the same axis for the first and third rotations. The discussion highlights that Euler angles are often favored in mechanical engineering, whereas Tait-Bryan angles are more commonly used in marine and aerospace applications. Concerns about gimbal lock, which affects Euler angles by losing a degree of freedom during certain rotations, are noted, although there is debate about whether Tait-Bryan angles are entirely free from this issue. The conversation also touches on the terminology used in describing rotational motion, questioning why "steady precession" is more commonly referenced than "steady yaw." Overall, the choice between the two systems may depend on specific applications and the nature of the rotational problems being addressed.
Trying2Learn
Messages
375
Reaction score
57
TL;DR Summary
Which to use; and in which problems: Tait or Euler angles?
Good Morning!

I understand that the definitions and notations used for Tait–Bryan angles are similar to those described above for proper Euler angles, and I can work problems in either. However, I lack the ability to "rise above both" and categorize them.

I do understand that the only difference is that Tait–Bryan angles represent rotations about three distinct axes (yaw, pitch, roll) , while Euler angles use the same axis for both the first and third elemental rotations (precession, nutation spin).

That said, it SEEMS to me that Euler angles are preferred in mechanical engineering
Tait are preferred in marine and aerospace

Is there any reason (or any special problems) such that one is better than the other? Or does it really not matter?

And while I am at it: why do we talk about "steady PRECESSION" and never "steady YAW"
 
Engineering news on Phys.org
Here's a video description of the various rotations, although watching it may give you vertigo.

https://www.google.com/search?q=pro...#fpstate=ive&vld=cid:f140b514,vid:wV59Xg-sm70

and here's a cheat sheet comparison of the types of rotations:

http://www.clinicalgaitanalysis.com/faq/angles.html

I did see some references that said Tait-Bryant angles were more suited to particle motion. It seemed the Euler angles suffer from gimbal lock in certain rotation combos, losing one degree of freedom, whereas Tait-Bryant angles don't have this issue.

https://en.wikipedia.org/wiki/Gimbal_lock

Vaguely I recall using Frenet-Serret formulas to set up a coordinate system relative to the particle traveling along a trajectory using a tangent vector, normal vector, and their cross-product to define axes relative to the object.

https://en.wikipedia.org/wiki/Frenet–Serret_formulas

Perhaps @Mark44 or @fresh_42 can explain this better.
 
Last edited:
jedishrfu said:
It seemed the Euler angles suffer from gimbal lock in certain rotation combos, losing one degree of freedom, whereas Tait-Bryant angles don't have this issue.

https://en.wikipedia.org/wiki/Gimbal_lock
I think that Tait-Bryant still has gimbal lock problems. Your first linked reference indicates a gimble lock problem.
jedishrfu said:
and here's a cheat sheet comparison of the types of rotations:

http://www.clinicalgaitanalysis.com/faq/angles.html
IMO, if the gimble lock problem could be avoided by using Tait-Bryant instead of quaternions, then quaternions would not be used nearly as much.
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top