- #1
Luk
Let's consider a signal which is continuous in both time and amplitude. Now we consider the amplitude of this signal at specific time instants only. This is my understanding of sampling a signal in time domain.
When performing a Fourier transform on a time discrete signal, we have to apply the DTFT. The DTFT sums upp all the samples multiplied by a complex exponential function. In this complex exponential function we multiply an angular frequency with the index k. Well, I'm not sure what this is all suppossed to tell me. But I especially can't get my head around the angular frequency, which is somehow normalized on the sampling rate. What does this mean?
When performing a Fourier transform on a time discrete signal, we have to apply the DTFT. The DTFT sums upp all the samples multiplied by a complex exponential function. In this complex exponential function we multiply an angular frequency with the index k. Well, I'm not sure what this is all suppossed to tell me. But I especially can't get my head around the angular frequency, which is somehow normalized on the sampling rate. What does this mean?