Understanding the Poynting Theorem

  • Thread starter Thread starter MatinSAR
  • Start date Start date
AI Thread Summary
The discussion revolves around the derivation of the Poynting theorem, specifically the equation ∇⋅S = -∂u/∂t - J⋅E, and whether it should be considered in a linear medium. Participants explore how to rewrite terms involving magnetic and electric fields in a linear medium, leading to expressions for energy densities u_E and u_B. The second question addresses whether ∇⋅S represents the net energy flux at a point and the significance of the negative sign in the term -J⋅E, which indicates the work done by the field on charges. The conversation also touches on the implications of energy conservation and the role of permeability in these equations. Understanding these concepts is crucial for applying Maxwell's equations to derive related equations.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
Derive related equation using maxwell equations and describe each term.
Relevant Equations
Poynting Theorem.
Hello, I have two questions. First, when deriving ##\nabla \cdot \mathbf{S} = -\frac{\partial u}{\partial t} - \mathbf{J} \cdot \mathbf{E} ##, should we consider a linear medium? When we subtract ##\mathbf{E} \cdot (\nabla \times \mathbf{H})## from ## \mathbf{H} \cdot (\nabla \times \mathbf{E})##, we get ##-\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} - \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} - \mathbf{J} \cdot \mathbf{E}##. Knowing that ##\frac{d}{dt} (\mathbf{H} \cdot \mathbf{B}) = \frac{d}{dt} \mathbf{H} \cdot \mathbf{B} + \mathbf{H} \cdot \frac{d}{dt} \mathbf{B}##, for a linear medium with ##\mathbf B=\mathbf {\mu} \mathbf H## we can rewrite ## \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t}## as ##\frac{1}{2} \frac{d}{dt} (\mathbf{H} \cdot \mathbf{B})## or ##\frac{d}{dt} u_B ## because for a linear medium we can say that ##\frac{d}{dt} \mathbf{H} \cdot \mathbf{B}=\mathbf{H} \cdot \frac{d}{dt} \mathbf{B}##.

Applying the same process for the ##\mathbf E## part, we can derive the ##\frac{d}{dt} \mathbf{u_E}## term. Then we write ##\mathbf u=\mathbf{u_E} + \mathbf{u_B}##.
Is my understanding correct?

Second question: Is ##\nabla \cdot \mathbf{S}## the net energy flux passing a point? What does the term ##- \mathbf{J} \cdot \mathbf{E}## represent? I know that ##\mathbf{J} \cdot \mathbf{E}## is the work done by the field to move charges, but what does the negative sign indicate?
 
Last edited:
Physics news on Phys.org
MatinSAR said:
Homework Statement: Derive related equation using maxwell equations and describe each term.
Relevant Equations: Poynting Theorem.

Second question: Is ∇⋅S the net energy flux passing a point? What does the term −J⋅E represent? I know that J⋅E is the work done by the field to move charges, but what does the negative sign indicate?
Divergence is generation of energy. The sum of the three equals zero means energy conservation.
 
anuttarasammyak said:
Divergence is generation of energy.
Like when we have an emf in the region?
 
Yes, decrease of u generates S to go.
 
anuttarasammyak said:
Yes, decrease of u generates S to go.
Thank you for your help.
 
  • Like
Likes anuttarasammyak
MatinSAR said:
Homework Statement: Derive related equation using maxwell equations and describe each term.
Relevant Equations: Poynting Theorem.

Hello, I have two questions. First, when deriving ∇⋅S=−∂u∂t−J⋅E, should we consider a linear medium?
Permeability is defined by ratio of B and H. It is not always constant but can be complex function of multi-variables as ferro magnetism shows. Here its zero time derivative ,i.e. constant as for time, is used.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top