MHB Understanding the Relationship between Angles & Diagonals in a Polygon

AI Thread Summary
The discussion focuses on the relationship between angles and diagonals in polygons, specifically starting with pentagons. A formula for calculating the number of diagonals in a convex polygon with \(n\) sides is presented: \(D_n = \frac{n(n-3)}{2}\). The reasoning involves inductive proof, demonstrating how adding a vertex affects the number of diagonals. The conversation also touches on the broader implications of this relationship for understanding polygon properties. Overall, the exploration seeks to clarify the connections between angles and diagonals in various polygons.
highmath
Messages
35
Reaction score
0
There a relationships between angles to diagonals in a polygon?
 
Mathematics news on Phys.org
Welcome to MHB!

Do you have any particular polygons in mind?
 
Can we start with pentagon?
What can I say on the pentagon itself, the angles of it, and diagonal?
I do a presentation and the topic of it is as above: "relationships between angles and diagonal". I want to show the topic and investigate it.
I don't get a mark on the presentation. It is only for adult course in the center... (community center)
So what do you say?
Thanks for any help...
 
A convex polygon with \(n\) sides has \(n\) vertices, and a diagonal can be drawn from each vertex to all but 2 of the other vertices. Iterating over all vertices, and observing the diagonals will be drawn twice, we may hypothesize that the number of diagonals \(D_n\) is given by:

$$D_n=\frac{n(n-3)}{2}$$ where \(3\le n\)

Observing the base case \(D_3=0\) is true, for a triangle has no diagonals, we may use as our inductive step, the addition of another vertex. From this new vertex, diagonals may be drawn to all but \(n-2\) of the other vertices and a new diagonal may now be drawn between the two existing vertices on either side of the new vertex, for a total of \(n-1\) new diagonals. Hence:

$$D_{n+1}=\frac{n(n-3)}{2}+n-1=\frac{n(n-3)+2(n-1)}{2}=\frac{n^2-n-2}{2}=\frac{(n+1)(n-2)}{2}=\frac{(n+1)((n+1)-3)}{2}$$

We have derived \(D_{n+1}\) from \(D_n\), thereby completing the proof by induction.
 
highmath said:
There a relationships between angles to diagonals in a polygon?
...and at how many other sites did you post this?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top