- #176
sweetser
Gold Member
- 360
- 0
Dirac algebra and quaternions
Hello Carl:
> Since my background is in elementary particles, I'd prefer that you go with the flat space and explain it again from that point of view and would appreciate that.
No problem, so long as it is clear the ability to choose between a metric theory like GR, and a potential theory like Newton's approach is at the core of what is "new" about GEM. The quotes are required, because all I am doing is exploiting a symmetry property of a covariant derivative, which has been around for a while.Quaternions have been discovered and rediscovered many times. The first to find them was Gauss, because Gauss discovered everything. Only much later did they realize this bit of one of his notebooks was an uncredited invention. Hamilton discovered them while trying to come up with a rule for multiplying triplets (can be done, but division does not work). Rodriguez discovered them while trying to do 3D rotations, their one wide use today.
The Pauli algebra is almost the quaternions. For doing calculations in physics, they make things a little easier, because there is an extra factor of i. It is simple to set up the Lorentz group using Pauli matrices. It is not simple to do with real quaternions. De Leo first did it in 1996 or so. Peter Jack was the first person to write the Maxwell equations using only real quaternions, and I repeated the trick independently a year later.
There is a cost to convenience, and it is very subtle. With the Pauli algebra, one can multiply two non-zero numbers and get zero. How many pairs of these are there? About an infinite amount, plus or minus 42. In some ways, these infinite zeroes don't do anything but complicate statistics. It is my belief, without evidence, that these bogus zeroes could be the reason one has to do regularization and renormalization in quantum field theory. This is 100% speculation. I could prove the point by doing a calculation using quaternions exclusively (no gamma matrices), and demonstrating that regularization and renormalization were not needed to make the calculation behave. I am quite certain I could not do such a calculation on my own, only able to act like a adviser for people skilled in the arts of quantum field theory. I have no expectation that this speculation with be confirmed or rejected in my lifetime. It is a favorite speculation of mine though :-)
I am a big fan of time! The reason is that time lies straight down the diagonal of a quaternion. With all of our incredibly tiny relativistic velocities, it says that we change hardly at all in space, that nearly all of the change we experience is through time.
It is one of those funny "size" issues: most people will say that the Dirac algebra is bigger since quaternions fit inside the Dirac algebra, along with all those bogus zeros. I claim that being a division algebra will allow you to do more, and it is the size of what can be done that matters most.
What is the biggest, most important algebra? The one the user thinks they can do the most in :-) In my case that would be the quaternions, in yours, a variation on the Dirac algebra. I actually have a limitation with quaternions, it is the pea under a mountain of mattresses for me. I have no idea how to handle the connection. It is also clear that far too few folks work with quaternions, so to communicate, I had to translate all the work I did initially in quaternions into tensors.For anyone interested in seeing good old technical conflicts, I posted something in slashdot.com about my work, and got in a classic nasty discussion (well, he was the one to toss insults, and I did learn something, that a simple model of mine was too simple. Apres the name calling part, he is back to the banal defense of the status quo).
HTTP://science.slashdot.org/comment...mmentsort=3&mode=thread&pid=15604834#15605147
Hello Carl:
> Since my background is in elementary particles, I'd prefer that you go with the flat space and explain it again from that point of view and would appreciate that.
No problem, so long as it is clear the ability to choose between a metric theory like GR, and a potential theory like Newton's approach is at the core of what is "new" about GEM. The quotes are required, because all I am doing is exploiting a symmetry property of a covariant derivative, which has been around for a while.Quaternions have been discovered and rediscovered many times. The first to find them was Gauss, because Gauss discovered everything. Only much later did they realize this bit of one of his notebooks was an uncredited invention. Hamilton discovered them while trying to come up with a rule for multiplying triplets (can be done, but division does not work). Rodriguez discovered them while trying to do 3D rotations, their one wide use today.
The Pauli algebra is almost the quaternions. For doing calculations in physics, they make things a little easier, because there is an extra factor of i. It is simple to set up the Lorentz group using Pauli matrices. It is not simple to do with real quaternions. De Leo first did it in 1996 or so. Peter Jack was the first person to write the Maxwell equations using only real quaternions, and I repeated the trick independently a year later.
There is a cost to convenience, and it is very subtle. With the Pauli algebra, one can multiply two non-zero numbers and get zero. How many pairs of these are there? About an infinite amount, plus or minus 42. In some ways, these infinite zeroes don't do anything but complicate statistics. It is my belief, without evidence, that these bogus zeroes could be the reason one has to do regularization and renormalization in quantum field theory. This is 100% speculation. I could prove the point by doing a calculation using quaternions exclusively (no gamma matrices), and demonstrating that regularization and renormalization were not needed to make the calculation behave. I am quite certain I could not do such a calculation on my own, only able to act like a adviser for people skilled in the arts of quantum field theory. I have no expectation that this speculation with be confirmed or rejected in my lifetime. It is a favorite speculation of mine though :-)
I am a big fan of time! The reason is that time lies straight down the diagonal of a quaternion. With all of our incredibly tiny relativistic velocities, it says that we change hardly at all in space, that nearly all of the change we experience is through time.
It is one of those funny "size" issues: most people will say that the Dirac algebra is bigger since quaternions fit inside the Dirac algebra, along with all those bogus zeros. I claim that being a division algebra will allow you to do more, and it is the size of what can be done that matters most.
What is the biggest, most important algebra? The one the user thinks they can do the most in :-) In my case that would be the quaternions, in yours, a variation on the Dirac algebra. I actually have a limitation with quaternions, it is the pea under a mountain of mattresses for me. I have no idea how to handle the connection. It is also clear that far too few folks work with quaternions, so to communicate, I had to translate all the work I did initially in quaternions into tensors.For anyone interested in seeing good old technical conflicts, I posted something in slashdot.com about my work, and got in a classic nasty discussion (well, he was the one to toss insults, and I did learn something, that a simple model of mine was too simple. Apres the name calling part, he is back to the banal defense of the status quo).
HTTP://science.slashdot.org/comment...mmentsort=3&mode=thread&pid=15604834#15605147
Last edited: