- #1
snorkack
- 2,249
- 489
The spectrum of first generation resonances, counting Δ but including only 4 and 3 star particles (the latter in italics) goes:
p(938)1/2+
n(940)1/2+
Δ(1230)3/2+
N(1440)1/2+
N(1520)1/2-
N(1535)1/2-
Δ(1600)3/2+
Δ(1620)1/2-
N(1650)1/2-
N(1675)5/2-
N(1680)5/2+
Δ(1700)3/2-
N(1700)3/2-
N(1710)1/2+
N(1720)3/2+
N(1875)3/2-
N(1880)1/2+
N(1895)1/2-
N(1900)3/2+
Δ(1900)1/2-
Δ(1905)5/2+
Δ(1910)1/2+
Δ(1920)3/2+
Δ(1930)5/2-
Δ(1950)7/2+
N(2060)5/2-
N(2100)1/2+
N(2120)3/2-
N(2190)7/2-
Δ(2200)7/2-
N(2220)9/2+
N(2250)9/2-
Δ(2420)11/2+
N(2600)11/2-
So, the series terminates around 2500 MeV.
What prevents existence of higher energy resonances?
p(938)1/2+
n(940)1/2+
Δ(1230)3/2+
N(1440)1/2+
N(1520)1/2-
N(1535)1/2-
Δ(1600)3/2+
Δ(1620)1/2-
N(1650)1/2-
N(1675)5/2-
N(1680)5/2+
Δ(1700)3/2-
N(1700)3/2-
N(1710)1/2+
N(1720)3/2+
N(1875)3/2-
N(1880)1/2+
N(1895)1/2-
N(1900)3/2+
Δ(1900)1/2-
Δ(1905)5/2+
Δ(1910)1/2+
Δ(1920)3/2+
Δ(1930)5/2-
Δ(1950)7/2+
N(2060)5/2-
N(2100)1/2+
N(2120)3/2-
N(2190)7/2-
Δ(2200)7/2-
N(2220)9/2+
N(2250)9/2-
Δ(2420)11/2+
N(2600)11/2-
So, the series terminates around 2500 MeV.
What prevents existence of higher energy resonances?