Upper end of nucleon overtones

  • I
  • Thread starter snorkack
  • Start date
  • Tags
    Nucleon
In summary, the spectrum of first generation resonances, counting Δ but including only 4 and 3 star particles (the latter in italics) goes:p(938)1/2+n(940)1/2+Δ(1230)3/2+N(1440)1/2+N(1520)1/2-N(1535)1/2-Δ(1600)3/2+Δ(1620)1/2-N(1650)1/2-N(1675)5/2-N(1680)5/2+Δ(1700
  • #1
snorkack
2,225
485
The spectrum of first generation resonances, counting Δ but including only 4 and 3 star particles (the latter in italics) goes:
p(938)1/2+
n(940)1/2+

Δ(1230)3/2+
N(1440)1/2+
N(1520)1/2-
N(1535)1/2-
Δ(1600)3/2+
Δ(1620)1/2-
N(1650)1/2-
N(1675)5/2-
N(1680)5/2+
Δ(1700)3/2-
N(1700)3/2-
N(1710)1/2+
N(1720)3/2+
N(1875)3/2-
N(1880)1/2+

N(1895)1/2-
N(1900)3/2+
Δ(1900)1/2-
Δ(1905)5/2+
Δ(1910)1/2+
Δ(1920)3/2+
Δ(1930)5/2-

Δ(1950)7/2+
N(2060)5/2-
N(2100)1/2+
N(2120)3/2-

N(2190)7/2-
Δ(2200)7/2-
N(2220)9/2+
N(2250)9/2-
Δ(2420)11/2+
N(2600)11/2-

So, the series terminates around 2500 MeV.
What prevents existence of higher energy resonances?
 
  • Like
Likes ohwilleke
Physics news on Phys.org
  • #2
PDG lists discovered particles only, with various degrees of certainty indicated by stars. There might be higher excited states but if they are wide (short-living) they can be impossible to find experimentally. If they are too wide it's questionable if we can talk about their existence as separate states at all.
 
  • Like
Likes Astronuc, vanhees71 and ohwilleke
  • #3
snorkack said:
\What prevents existence of higher energy resonances?

Nothing.

In theory, higher energy resonances are possible, although hard to see. But, as @mfb correctly notes, "PDG lists discovered particles only" and those are the ones that we've discovered so far.

As @mfb also correctly notes, there might at some point be circumstances in which something intrinsically limits the possibility of discovering a more massive resonance. But there is no good reason to think that the current limit is anything more than a function of how much money we've spent so far on experiments and instrumentation designed to see it. If we spent another 500 billion Euros on a bigger and better collider than the LHC we would almost surely see at least a few higher mass excitations than we have so far, and would almost certainly verify or rule out some of the one or two star resonances seen so far.
 
  • #4
A mistake in my first post - wrong spin for one.
For example, the nucleons with lowest energy for a given spin:
p(938)1/2+****
N(1520)3/2-****
N(1675)5/2-****
N(1990)7⁄2+**

N(2220)9/2+****
N(2600)11/2-***
N(2700)13⁄2+**
So, looking at the series - what in the known properties makes the N(2600) a *** particle, and N(1990) and N(2700) ** particles? Large width compared to the **** resonances like N(2220)9/2+? Low cross-section for formation? Why is there no observed N with spin 15/2, not even *? Can the mass, resonance width and formation cross-section of a nucleon of 15/2 spin be predicted?
 
  • Like
Likes ohwilleke
  • #5
snorkack said:
4 and 3 star particles
If one were to consider two star (**), then one would note higher energy resonances.
** = evidence of existence is fair.

Isn't it a bit arbitrary to consider only **** and ***, which means "Existence is certain" or "Existence is very likely"? If one considers the ** entries, then one would observe ∆(2950) 15/2+, but the existence is fair (**). Ostensibly, there is some theoretical basis. So, to increase it to ***, what experimental evidence is needed?

From 2019 - https://pdg.lbl.gov/2019/reviews/rpp2019-rev-n-delta-resonances.pdf
compare to 2006 - https://www.jlab.org/conferences/Nstar/talks/Capstick.pdf (slides 9 and 13). Also see, cautionary notes on Slides 15 and 16.

Slide 15 of Capstick's 2006 presentation - "“In the search for ‘missing’ quark-model states, indications of new structures occasionally are found. Often these are associated (if possible) with the one- and two-star states listed in Table 1. We caution against this: The status of the one-and two-star states found in the Karlsruhe-Helsinki (KH80) and Carnegie-Mellon/Berkeley (CMB80) fits is now doubtful.”"

A seemingly more skeptical tone is expressed on Slide 16 - "1* states are a dream, 2* states are a fantasy," which is attributed to Steve Dytman, 2005

See also Capstick, Slide 21
 
  • Like
Likes ohwilleke

FAQ: Upper end of nucleon overtones

What is the upper end of nucleon overtones?

The upper end of nucleon overtones refers to the highest possible energy state that a nucleon (proton or neutron) can have within a given system. This energy state is typically represented by the quantum number n, with higher values of n indicating higher energy levels.

How are nucleon overtones related to nuclear structure?

Nucleon overtones are closely related to the structure of the atomic nucleus. The energy levels of nucleons within the nucleus are determined by the nuclear potential and can be used to understand the stability and properties of different nuclei.

What factors affect the upper end of nucleon overtones?

The upper end of nucleon overtones is affected by several factors, including the size and shape of the nucleus, the number of nucleons present, and the interactions between nucleons. These factors can lead to variations in the energy levels and can impact the overall stability of the nucleus.

How is the upper end of nucleon overtones studied?

The upper end of nucleon overtones can be studied through various experimental techniques, such as nuclear spectroscopy and scattering experiments. These methods allow scientists to measure the energy levels and properties of nucleons within the nucleus and gain a better understanding of nucleon overtones.

What is the significance of the upper end of nucleon overtones?

The upper end of nucleon overtones is significant in understanding the behavior and structure of atomic nuclei. It can provide insights into the stability and properties of different nuclei and can also be used to predict the behavior of nucleons in extreme environments, such as in nuclear reactions or in the cores of stars.

Similar threads

Replies
5
Views
1K
Replies
5
Views
1K
Replies
1
Views
834
Replies
2
Views
2K
Replies
39
Views
6K
Back
Top