Using Gauss' Law on a Solid Annular Sphere

AI Thread Summary
The discussion focuses on applying Gauss' Law to determine the electric field around a solid annular sphere with a point charge +Q at its center. For the region 0 < r < r0, the enclosed charge is solely +Q, leading to the electric field expression E = Q/(4πε0r^2) after integrating over the sphere's surface area. Participants clarify that the surface integral simplifies due to the radial nature of the electric field, confirming the correct approach to the problem. The initial confusion regarding charge density and the integral form of Gauss's Law is resolved, emphasizing the importance of understanding vector calculus notation. The conversation highlights the significance of correctly applying Gauss's Law to different regions around the charge.
deathsink
Messages
2
Reaction score
0

Homework Statement



Imagine a solid, annular sphere. At the center of the hollow is a point charge +Q. The inner radius of the sphere is r0, and the outer radius is R. Assume the charge density p = p0/r (for r0 < r < R). Calculate using the integral form of Gauss's Law the electric field in all three regions:

0< r < r0
r0< r < R
R < r < infinity

Homework Equations



[PLAIN]http://www.forkosh.dreamhost.com/mimetex.cgi?%5Coint_S%5Cmathbf%7BE%7D%5Ccdot%7Bd%7D%5Cmathbf%7BA%7D=%5Cfrac%7BQ%7D%7B%5Cepsilon_0%7D=%5Cfrac%7B1%7D%7B%5Cepsilon_0%7D%5Cint_V%5Crho(%5Cmathbf%7Br%7D)%5C,dV

The Attempt at a Solution



for 0 < r < r0

E(4 Pi r^2) = 1/e0 (p0/r)(4/3 pi r^3)
=> E = (1/3e0)p0

But this can't be right for because all of the r's cancel out. And since I can't do this one, I know I can't do the rest.

Thank you.
 
Last edited by a moderator:
Physics news on Phys.org
For this first interval, where 0 < r < r0, the enclosed charge is just +Q, the charge at the center of the hollow.
 
gneill said:
For this first interval, where 0 < r < r0, the enclosed charge is just +Q, the charge at the center of the hollow.

When you take the surface integral of E*dA, do you get E*(area of sphere) which you then need to divide through by?

I have not had Vector Calculus, so a lot of the notation is odd to me.

Edit: I got E=\frac{Q}{4\pi \epsilon _0r_0{}^2} by dividing through by the area of a sphere.
 
Last edited:
Your E dot DA in the surface integral turns into E da, because the field is radially directed and so the dot product is just the product of the magnitudes of the vectors E and dA (which is normal to the surface over which you're integrating).

So, at radius r you end up with

E(4 π r2) = Q/ε0

Or, rearranged,

E = Q/(4 π ε0 r2)

Which should look familiar.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top