MHB Using the idea of conservation of energy

AI Thread Summary
The discussion focuses on the physics of a ball thrown straight up with a mass of 11 grams and an initial speed of 4 m/s, applying the conservation of energy principle. The kinetic energy of the ball as it leaves the hand is calculated to be 0.088 J. As the ball rises to its zenith, the work done by gravitational force is -0.088 J, indicating a decrease in kinetic energy. The gravitational potential energy at maximum height is also 0.088 J, reflecting the energy conversion. The maximum height reached by the ball is determined to be 1 meter above the release point.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everybody

There is a ball which has mass of 11 grams is thrown straight up with an initial speed of 4 m/s. Assume the air drag is negligible.

a. What is the kinetic energy of the ball (in J) as it leaves the hand? b. How much work is done by the gravitational force during the ball's rise to its zenith? c. What's the change in the gravitational potential energy of the ball during the ball's rise to its zenith? d. If the grav. force is taken zero at the pt. where it leaves your hands, what's the grav. pot. energy when it reaches the max. height? e. If the grav. force is taken zero at the pt. where it leaves your hands, what would the grav. pot. energy when it reaches the max. height? f. What is the max height the ball reaches? The work:

The known values
mass is 11 grams
The initial velocity is 4m/s
The final velocity is 0
the value of gravity is 9.81m/s*s

a. I need to convert grams to kilograms. 11 grams to .011 kg. Then use kinetic energy which $K=(mv^2)/2$.
the answer is .088J.
 
Last edited:
Mathematics news on Phys.org
Yes, kinetic energy is "(1/2)mv^2". If you want the energy in Joules, you want the mass in kg and speed in m/s.

11 g grams is 11/1000= 0.011 kg. At the moment the ball is thrown up v is 4 m/s so the kinetic energy is (1/2)(0.011)(4^2)= 0.088 J


At the "zenith", the speed is 0 so there is no kinetic energy. "Using the idea of conservation of energy", that means that the increase in potential energy must be that same 0.088 J. The "work done" on the ball by the force of gravity is -0.088 J because that is how much its kinetic energy decreased. You say "If the grav. force is taken zero at the pt. where it leaves your hands" but you must mean "if the grav. potential energy is taken zero"- the force is always -mg, not 0. If the potential energy is, to start, 0 an increases by 0.088 J, as above, then it has increased to 0.088 J.

Your "e" is exactly the same as "d"? Did you miscopy?

To find the maximum height, set mh= 0.088. h= 0.088/0.011= 1 m. That will be, of course, 1 meter above the point at which it is released.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top