I Variation of perfect fluid and Lie derivative

TAKEDA Hiroki
Messages
4
Reaction score
2
In Hawking-Ellis Book(1973) "The large scale structure of space-time" p69-p70, they derive the energy-momentum tensor for perfect fluid by lagrangian formulation. They imply if ##D## is a sufficiently small compact region, one can represent a congruence by a diffeomorphism ##\gamma: [a,b]\times N\rightarrow D## where ##[a,b]## is some closed interval of ##R^1## and ##N## is some 3-dimensional manifold with boundary. The tangent vector of ##\gamma## is ##W=(\partial/\partial t)_{\gamma}##. The Lagrangian is taken to be $$L=-\rho(1+\epsilon)$$ and the action ##I## is required to be stationary when the flow lines are varied and ##\rho## is adjusted to keep ##j^a## conserved where ##\rho## is a function and ##\epsilon## is the elastic potential as a function of ##\rho##. A variation of the flow lines is a differentiable map ##\alpha: (-\delta, \delta)\times[a, b]\times N\rightarrow D## such that $$\alpha(0, [a,b],N)=\gamma([a,b],N).$$ They say "Then it follows that $$\Delta W=L_{K}W$$ where the vector ##K## is ##K=(\partial/\partial u)_{\alpha}##."
I'm curious this equation is correct. I guess ##\Delta W## means its components is ##(\partial W^i/\partial u)|_{u=0}## in their book. However r.h.s components are calculated as follows.$$(L_{K}W)^i=\frac{\partial W^i}{\partial x^j}K^j-\frac{\partial K^i}{\partial x^j}W^j=\frac{\partial W^i}{\partial u}-\frac{\partial K^i}{\partial t}$$ So I wonder $$(\Delta W)^i=\frac{\partial W^i}{\partial u}\neq (L_{K}W)^i=\frac{\partial W^i}{\partial u}-\frac{\partial K^i}{\partial t}.$$ ##(\partial K^i/\partial t)=0?## Will you tell me where I am wrong?
This pdf file is Eur. Phys. J. H paper by S. Hawking. See page 19. But I'm sorry my notation is little different.
https://epjti.epj.org/images/stories/news/2014/10.1140--epjh--e2014-50013-6.pdf
 
  • Like
Likes berkeman
Physics news on Phys.org
I read it as follows:

## \Delta W \stackrel{p.17}{=} \pi (\left. \frac{\partial}{\partial u} \alpha \right|_{u=0}) \stackrel{p.19}{=} \pi(\left. K_\alpha \right|_{u=0}) ## is the variation vector of the vector field ##W## in direction of ##K_\alpha##, the variation of flow lines in direction ##K_\alpha= \left( \frac{\partial}{\partial u} \right)_\alpha ## at the point ##u=0##. Isn't this exactly the definition of the Lie derivative of ##W## along ##K## at this point? So ##"##It then follows that ##\Delta W = L_KW\,"## is more a summary of the specific set-up of the example rather than a conclusion form previous statements. The conclusions come next (p.20).
 
Thank you for your reply.

I see.. This equation is a definition rather than a derivation.
But I have a question. This paper is written more precisely by using bundle than Hawking-Ellis Book(1973). In the book, they denote ##\partial\Psi_{(i)}(u,r)/\partial u)|_{u=0}## by ##\Delta\Psi_{(i)}## where ##\Psi_{(i)}(u,r)## is a one-parameter family of fields, ##u## is a variation parameter and ##r## is a point of spacetime. The concept of bundle is not used. In this case, can I also understand ##\Delta W=L_{K}W## is exactly the definition of the Lie derivative of ##W## along ##K## at the point? And can both (r.h.s.) and (l.h.s.) components be ##(\partial W^i/\partial u)##? Sorry I'm confused.
 
I'm not sure I understand you correctly. As soon as you have a (tangent) vector field all over the manifold, you also have vector bundles or even tensor bundles. It is a matter of viewpoint and language, not of a discrepancy regarding the manifold. To me the equation ##\Delta W = L_KW## is what variation calculus is all about, only expressed in terms of certain vector fields, ##W## and ##K##.

The "missing" direction ##K## in ##\Delta W## is hidden in the definition of the variation vector (field) ##\Delta## of the vector field ## W## (p.17) which uses the direction ##\left. K\right|_{u=0} = \left. \left( \left( \frac{\partial}{\partial u}\right) \circ \alpha \right) \right|_{u=0}## and the variation ##\alpha \, : \, \alpha(0,t,q)=\gamma(t,q) ## for ##t \in [a,b]\; , \;q \in N\,## by defining ##\Delta W = \pi \left( \left. \frac{\partial}{\partial u}\right|_{u=0} \gamma(t,q) \right)##.

Perhaps
https://www.physicsforums.com/insights/pantheon-derivatives-part-ii/
https://www.physicsforums.com/insights/pantheon-derivatives-part-iv/
can help you to clarify the picture. It is only an overview and not especially about variations but is has some examples.
 
Thanks a lot.
So Why is the (l.h.s) component ##(\partial W^i/\partial u)##, though (r.h.s.) component is ##(\partial W^i/\partial u)-(\partial K^i/\partial t)## ?? I want you to explain without using the projection ##\pi## because I'm not familiar with the bundle. In the following calculation, this relation ##(\partial W^i/\partial u)=(L_{K}W)^i=W^i{}_{;j}K^j-K^i{}_{;j}W^j## is used. But ##(L_{K}W)^i## is also expressed as ##(L_{K}W)^i=(\partial W^i/\partial u)-(\partial K^i/\partial t)##. Is this a contradiction?
 
Last edited:
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Back
Top