Varying an action with respect to a scalar field

In summary, the conversation discusses the variation of the action with regards to a scalar field in the flat version of the Robertson-Walker metric. The resulting equation is found to be missing a term, which is later derived to be equivalent to the Poisson's equation for the scalar field. The derivation involves using the Friedmann equations and assuming a homogeneous and isotropic universe.
  • #1
JD_PM
1,131
158
Homework Statement
Given the action



\begin{equation*}
S = \int d^4 x \sqrt{-\det g} \left( -\frac 1 2 g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi)\right)
\end{equation*}

Vary the action with respect to the scalar field ##\phi(x)## and obtain



\begin{equation*}
\ddot \phi + 3\left( \frac{\dot a}{a}\right) \dot \phi = -\frac{\partial V(\phi)}{\partial \phi}
\end{equation*}
Relevant Equations
Please check below
Let us work with ##(-+++)## signature

Where the metric ##g_{\mu \nu}## is the flat version (i.e. ##K=0##) of the Robertson–Walker metric (I personally liked how Weinberg derived it in his Cosmology book, section 1.1)

\begin{equation*}
(ds)^2 = -(dt)^2 + a^2(t) (d \vec x)^2
\end{equation*}

Hence ##\sqrt{-\det g} = a^3##

My computation is the following

\begin{align*}
\delta S &= \int d^4 x \delta \left[ \sqrt{-\det g} \left( -\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right)\right]\\
&= \int d^4 x \left[ \sqrt{-\det g} \left( -\frac{1}{2} g^{\mu \nu} \delta \left(\partial_{\mu} \phi \partial_{\nu} \phi\right) - \underbrace{\delta V(\phi)}_{=\frac{\partial V(\phi)}{\partial \phi}\delta \phi} \right)\right]\\
&= \int d^4 x \left[ \sqrt{-\det g} \left( -\underbrace{g^{\mu \nu} \left(\partial_{\mu} \phi \ \delta( \partial_{\nu} \phi) \right)}_{=g^{\mu \nu} \left(\partial_{\mu} \phi \ \partial_{\nu}( \delta \phi) \right)} - \frac{\partial V(\phi)}{\partial \phi}\delta \phi \right)\right]\\
&= \int d^4 x \left[ \sqrt{-\det g} \left( g^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi - \frac{\partial V(\phi)}{\partial \phi} \right)\right]( \delta \phi)\\
&+ \underbrace{\int d^4 x \left[ \sqrt{-\det g} \left( \partial_{\nu} \left( g^{\mu \nu} \partial_{\mu} \phi \delta \phi\right) \right)\right]( \delta \phi)}_{\text{Surface term vanishes}}
\end{align*}

Hence I get

\begin{equation*}
\delta S = 0 \iff \sqrt{-g}\left( \partial^{\mu}\partial_{\mu} \phi - \frac{\partial V(\phi)}{\partial \phi}\right) = 0
\end{equation*}

But the above equation leads to the following timelike component

\begin{equation*}
-\partial^{0}\partial_{0} \phi - \frac{\partial V(\phi)}{\partial \phi} = 0 \Rightarrow \ddot \phi = - \frac{\partial V(\phi)}{\partial \phi}
\end{equation*}

So I am missing the ##3(\dot a / a)\dot \phi## term.

First thought that my mistake was not including the following well-known variation
\begin{equation*}
\delta \sqrt{-g} = \frac{\sqrt{-g}}{2}g^{\mu \nu} \delta g_{\mu \nu} = -\frac{\sqrt{-g}}{2} g_{\mu \nu}\delta g^{\mu \nu}
\end{equation*}

But given that they explicitly state that we should vary wrt the scalar field I interpreted this as taking ##\delta g_{\mu \nu} \to 0##. Is such interpretation wrong? Is the solution to my issue simply including this variation in my computation?

Thank you! :biggrin:
 
  • Like
Likes etotheipi
Physics news on Phys.org
  • #2
JD_PM said:
\begin{equation*}

\delta S = 0 \iff \sqrt{-g}\left( \partial^{\mu}\partial_{\mu} \phi - \frac{\partial V(\phi)}{\partial \phi}\right) = 0

\end{equation*}But the above equation leads to the following timelike component
\begin{equation*}
-\partial^{0}\partial_{0} \phi - \frac{\partial V(\phi)}{\partial \phi} = 0 \Rightarrow \ddot \phi = - \frac{\partial V(\phi)}{\partial \phi}
\end{equation*} So I am missing the ##3(\dot a / a)\dot \phi## term.
Hey JD, I don't know anything about this metric or topic, although from the original action I derived the same condition that ##\partial^{\mu} \partial_{\mu} \phi = \partial V / \partial \phi## but then instead considered that with the ##(-+++)## sig, and with ##i \in \{1,2,3 \}##$$
\begin{align*}
\partial^{\mu} \partial_{\mu} \phi & = \partial^0 \partial_0 \phi + \partial^i \partial_i \phi \\ \\

\partial^{\mu} \partial_{\mu} \phi &= - \partial_0 \partial_0 \phi + \partial_i \partial_i \phi \\ \\

\partial^{\mu} \partial_{\mu} \phi &= - \ddot{\phi} + \nabla^2 \phi \overset{!}{=} \frac{\partial V}{\partial \phi} \implies \ddot{\phi} - \nabla^2 \phi = - \frac{\partial V}{\partial \phi}
\end{align*}$$I don't know how you might turn the ##\nabla^2 \phi## term into something involving scale factors, but wondered if perhaps you didn't take into account the summation?

[And also, the second time derivative ##\partial^2 / \partial t^2 = \partial_0 \partial_0## with indices down, right? 😬]
 
  • Like
Likes JD_PM
  • #3
etotheipi said:
[...] perhaps you didn't take into account the summation?

[And also, the second time derivative ##\partial^2 / \partial t^2 = \partial_0 \partial_0## with indices down, right? 😬]

Absolutely right, thanks James 😜 I indeed missed the spatial term! We have

$$\ddot{\phi} - \nabla^2 \phi = - \frac{\partial V}{\partial \phi}$$

All what's left is to show that

\begin{equation}
\nabla^2 \phi = -3 \left( \frac{\dot a}{a}\right) \phi \tag{1}
\end{equation}

I am quite confident ##(1)## can be derived out of the fact that the real scalar field ##\phi## satisfies Poisson's equation ##\nabla^2 \phi = 4 \pi G_N \rho## (for instance, for some reference, check Tong's beautiful lecture notes EQ. (0.1)) AND the flat first Friedmann equation (let us not include the cosmological constant)

\begin{equation}
\left( \frac{\dot a}{a} \right)^2 = \frac{8 \pi G_N}{3} \rho \tag{F1}
\end{equation}

Remark: we can use Friedmann equations given that we are assuming an homogeneous and isotropic universe (which is implied in the metric we are using in this particular exercise). If you are interested in Cosmology, I strongly recommend probably the most complete, enlightening GR lecture notes I've ever come across: Matthias Blau's GR lecture notes. Friedmann equations are in EQ. (35.108).

Hence, using ##\nabla^2 \phi = 4 \pi G_N \rho## and ##(F1)## we find

\begin{equation*}
\nabla^2 \phi = -3 \left( \frac{\dot a}{a}\right) \phi \iff \phi := -\frac 1 2 \left( \frac{\dot a}{a}\right)
\end{equation*}

Argh... honestly I am not satisfied with my answer. I have been "forcing" the pieces to fit...

I will have a walk to refresh my mind!
 
  • #4
JD_PM said:
\begin{align*}
& \int d^4 x \left[ \sqrt{-\det g} \left( -\underbrace{g^{\mu \nu} \left(\partial_{\mu} \phi \ \delta( \partial_{\nu} \phi) \right)}_{=g^{\mu \nu} \left(\partial_{\mu} \phi \ \partial_{\nu}( \delta \phi) \right)} - \frac{\partial V(\phi)}{\partial \phi}\delta \phi \right)\right]\\
&= \int d^4 x \left[ \sqrt{-\det g} \left( g^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi - \frac{\partial V(\phi)}{\partial \phi} \right)\right]( \delta \phi)\\
&+ \underbrace{\int d^4 x \left[ \sqrt{-\det g} \left( \partial_{\nu} \left( g^{\mu \nu} \partial_{\mu} \phi \delta \phi\right) \right)\right]( \delta \phi)}_{\text{Surface term vanishes}}
\end{align*}
The factor ##\sqrt{-\det g} = a^3## is part of the Lagrangian density. So, after doing the integration by parts in order to "shift" the derivative ##\partial_{\nu}##,you get
\begin{align*}
& \int d^4 x \left[ a^3 \left( -\underbrace{g^{\mu \nu} \left(\partial_{\mu} \phi \ \delta( \partial_{\nu} \phi) \right)}_{=g^{\mu \nu} \left(\partial_{\mu} \phi \ \partial_{\nu}( \delta \phi) \right)} - \frac{\partial V(\phi)}{\partial \phi}\delta \phi \right)\right]\\
&= \int d^4 x \left[ \left( g^{\mu \nu} \partial_{\nu} \left( a^3 \partial_{\mu} \phi \right) - a^3 \frac{ \partial V(\phi)}{\partial \phi} \right)\right]( \delta \phi)+ {\text{Surface term}}
\end{align*}

If you want to take a shortcut, you can use the Euler-Lagrange equations as given by equation (10) here.
Be sure to include ##\sqrt{-\det g}## as part of ##\mathcal L##.
 
  • Love
  • Like
Likes JD_PM and etotheipi
  • #5
[Ahh clever, @TSny! I'd forgotten that with this metric the Christoffel symbols (obviously!) don't vanish, so ##\nabla_{\mu} \neq \partial_{\mu}## and for this particular term from the IBP, the second and third terms are not equal:$$\int d^4 x \partial_{\mu} (\sqrt{-g} g^{\mu \nu} \partial_{\nu} \phi ) \delta \phi = \int d^4 x (\sqrt{-g} g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi) \delta \phi \, \, \neq \, \, \int d^4 x (\sqrt{-g} g^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi) \delta \phi$$... :smile:]

...Anyway, I will be quiet now 🤫
 
Last edited by a moderator:
  • Like
Likes JD_PM
  • #6
TSny said:
The factor ##\sqrt{-\det g} = a^3## is part of the Lagrangian density. So, after doing the integration by parts in order to "shift" the derivative ##\partial_{\nu}##,you get
\begin{align*}
& \int d^4 x \left[ a^3 \left( -\underbrace{g^{\mu \nu} \left(\partial_{\mu} \phi \ \delta( \partial_{\nu} \phi) \right)}_{=g^{\mu \nu} \left(\partial_{\mu} \phi \ \partial_{\nu}( \delta \phi) \right)} - \frac{\partial V(\phi)}{\partial \phi}\delta \phi \right)\right]\\
&= \int d^4 x \left[ \left( g^{\mu \nu} \partial_{\nu} \left( a^3 \partial_{\mu} \phi \right) - a^3 \frac{ \partial V(\phi)}{\partial \phi} \right)\right]( \delta \phi)+ {\text{Surface term}}
\end{align*}

If you want to take a shortcut, you can use the Euler-Lagrange equations as given by equation (10) here.
Be sure to include ##\sqrt{-\det g}## as part of ##\mathcal L##.

Ohhh I understand what my mistake was now! 😍. We have

\begin{equation}
\delta S = 0 \iff \partial^{\mu}\left(a^3 \partial_{\mu} \phi\right) - a^3 \frac{ \partial V(\phi)}{\partial \phi} = 0 \tag{2}
\end{equation}

Oops I forgot to mention that we are dealing with a homogeneous scalar field (i.e. ##\partial_i \phi = 0##) 😅. Hence ##(2)## becomes

\begin{align}
&-\partial_{0}\left(a^3 \dot \phi \right) - a^3 \frac{ \partial V(\phi)}{\partial \phi} = 0 \Rightarrow \nonumber \\
&\Rightarrow 3a^2 \dot a \dot \phi + a^3 \ddot \phi + a^3 \frac{ \partial V(\phi)}{\partial \phi} = 0 \Rightarrow \tag{3} \\
&\Rightarrow
\ddot \phi + 3\left( \frac{\dot a}{a}\right) \dot \phi = -\frac{\partial V(\phi)}{\partial \phi} \nonumber
\end{align}

Where to get to the last line I simply multiplied both sides of ##(3)## by ##1/a^3##

Once again @TSny, hats off to you! :smile:
 
  • Like
Likes etotheipi

FAQ: Varying an action with respect to a scalar field

What is a scalar field?

A scalar field is a mathematical function that assigns a scalar value (such as temperature, pressure, or density) to every point in space.

How can an action be varied with respect to a scalar field?

To vary an action with respect to a scalar field, one can use the Euler-Lagrange equation, which is a mathematical tool used to find the extreme values of a functional (such as an action) by taking the derivative with respect to the field and setting it equal to zero.

What is the significance of varying an action with respect to a scalar field?

Varying an action with respect to a scalar field allows us to find the equations of motion for the field, which describe how the field changes over time. This is important in many areas of physics, including classical mechanics, quantum field theory, and general relativity.

Can varying an action with respect to a scalar field be applied to real-world problems?

Yes, varying an action with respect to a scalar field has many practical applications. For example, it can be used to study the behavior of fluids, electromagnetic fields, and even the Higgs field in particle physics.

Are there any limitations to varying an action with respect to a scalar field?

While varying an action with respect to a scalar field is a powerful tool, it does have its limitations. It assumes that the field is continuous and differentiable, and it may not be applicable in certain extreme situations, such as near singularities in general relativity.

Back
Top