MHB Verifying CR Equations for $z\cos z$

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Complex Trig
AI Thread Summary
The discussion focuses on verifying the Cauchy-Riemann (CR) equations for the function $f(z) = z\cos z$ where $z = x + yi$. The user initially presents their calculations but identifies a negative sign discrepancy in their results. Another participant points out that the user made a sign error in their algebra, highlighting the corrections in red. The thread also includes a brief mention of a missing "solved" tag, indicating that the issue was resolved. The main takeaway is the importance of careful algebraic manipulation when verifying CR equations.
Dustinsfl
Messages
2,217
Reaction score
5
$z\cos z$

Let $z = x + yi$.
Then $f(z) = (x + yi)\cos (x + yi)$.
By the addition rule for cosine and the identities $\cos yi = \cosh y$ and $-i\sin yi = \sinh y\Leftrightarrow \sin yi = i\sinh y$, we have that $\cos (x + yi) = \cos x\cosh y + i\sin x\sinh y$.
So
$$
f(z) = z\cos z = x\cos x\cosh y - y\sin x\sinh y + i(x\sin x\sinh y + y\cos x\cosh y).
$$
Then
$$
u(x,y) = x\cos x\cosh y - y\sin x\sinh y\quad\text{and}\quad
v(x,y) = y\cos x\cosh y + x\sin x\sinh y,
$$

I am trying to verify the CR equations but there is a negative sign difference. There has to be an error in my algebra but I can't find it. What is wrong with the above?
 
Mathematics news on Phys.org
dwsmith said:
$z\cos z$

Let $z = x + yi$.
Then $f(z) = (x + yi)\cos (x + yi)$.
By the addition rule for cosine and the identities $\cos yi = \cosh y$ and $-i\sin yi = \sinh y\Leftrightarrow \sin yi = i\sinh y$, we have that $\cos (x + yi) = \cos x\cosh y\,{\color{red}-}\,i\sin x\sinh y$.
So
$$
f(z) = z\cos z = x\cos x\cosh y\,{\color{red}+}\, y\sin x\sinh y + i({\color{red}-}\,x\sin x\sinh y + y\cos x\cosh y).
$$
Then
$$
u(x,y) = x\cos x\cosh y\,{\color{red}+}\, y\sin x\sinh y\quad\text{and}\quad
v(x,y) = y\cos x\cosh y\,{\color{red}-}\, x\sin x\sinh y,
$$

I am trying to verify the CR equations but there is a negative sign difference. There has to be an error in my algebra but I can't find it. What is wrong with the above?

You had a sign error. See all my changes in red.
 
Chris L T521 said:
You had a sign error. See all my changes in red.

Bad admin for missing the solved tag in the title for before you posted.:confused:
 
dwsmith said:
Bad admin for missing the solved tag in the title for before you posted.:confused:

I clicked on the link from the home page, and it didn't show a solved tag. :P
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top