Wave Pulse - Finding Average Transverse Acceleration of Segment

AI Thread Summary
A traveling wave pulse moves at 6 m/s across a string, with a segment showing an angle change from 17 degrees to zero over a distance of 3 mm. The discussion focuses on calculating the average transverse acceleration using the wave equation and the relationship between velocity and angle. The user initially attempts to derive acceleration from the second derivative of position but struggles with the concavity term. They then apply their intuition to relate average transverse acceleration to the slope of the wave at a specific point, ultimately realizing that approximating derivatives as a power series is necessary for the solution. The problem specifically asks for the average transverse acceleration of the string segment.
ArtVandelay
Messages
14
Reaction score
0

Homework Statement


A traveling wave pulse is shown in figure 1 below, traveling at v=6 m/s across a string. In figure 2, a short segment of the string is shown zoomed in. The angle of this string goes from θ1 = 17o to zero within a small horizontal distance Δx = 3 mm.

wave%20concavity.jpg


Homework Equations


∂^2y/∂x^2= 1/v2 * (∂^2y/∂t2^2)



The Attempt at a Solution


I know using that equation I want to solve for the acceleration, which is the second derivative of position (y), so I should solve for (∂^2y/∂t2^2) in terms of v, but when I do that I am still left with an equation in terms of ∂^2y/∂x^2, the concavity, which I am not sure what do do with / what it equals.

So next I tried using my intuition:

|average transverse acceleration| = |Δv|/Δt = initial transverse velocity / Δt.

And since initial transverse velocity = the slope of the graph at point 1 (where Δx begins) = rise/run = tan(θ), and Δt = Δx/v, the above eqn becomes:

( v * tan(θ) ) / Δx

But that isn't right
 
Physics news on Phys.org
I believe you are supposed to approximate ##y(x, t) ## and ## \frac {\partial^2 y} {\partial x^2} ## as a power series in the vicinity the crest and then use the given values to estimate whatever coefficients you will end up with.
 
You know that dy/dx varies from 0 to tan(17) over a distance Δx=3 mm.
You can approximate the derivative of f(x)=dy/dx as Δf/Δx. And this will be the left term of your equation.
 
Thanks guys! Approximating the derivative of f(x)=dy/dx as Δf/Δx did the trick.

Also, for reference purposes if anyone is reading this thread in search of an answer to a similar problem, I forgot to explicitly mention in my OP that the problem question states: "What is the (average) transverse acceleration of this string segment?"
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top