Wavelengths: Length between 2nd-order fringes

AI Thread Summary
The discussion revolves around calculating the distance between second-order fringes for two wavelengths of light passing through slits. The formulas for maxima and minima are provided, but there is confusion regarding which to use without explicit mention of bright or dark fringes. Attempts to solve the problem yield slightly different results depending on the chosen formula, leading to uncertainty about the correctness of the textbook solutions. A suggestion is made to derive a general algebraic formula for the distance between fringes before substituting numerical values. The importance of distinguishing between bright and dark fringes when using different wavelengths is emphasized.
okandrea
Messages
5
Reaction score
0

Homework Statement



Light of wavelenghs 4.80x10^2 nm and 632nm passes through two slits 0.52 mm apart. How far apart are the second-order fringes on a screen 1.6m away?

λ₁ = 4.80x10^2 nm = 4.80x10^-7m
λ₂ = 6.32x10^-7m
d = 0.52mm = 5.2x10^-4m
n = 2
L = 1.6

Homework Equations



(Maxima/Bright)
x/L = nλ/d
(Minima/Dark)
x/L = (n - 1/2)λ/d

*subscript of X would be n in both cases

△x = | x₁ - x₂ |

The Attempt at a Solution


I wasn't so sure which of the two formulas I would be using because there doesn't seem to be a clear indication as to whether or not it's bright/dark (this was what I mainly struggled with).

I tried using both but I don't understand if either of them are correct. I rearranged for x in both equations (moving the L variable to the right) and repeated it for each wavelength:

(A) Using dark:
x₁ = ((2 - 1/2)(4.80x10^-7)(1.6))/5.2x10^-4
x₁ = 2.2x10^-3m

x₂ = (2 - 1/2)(6.32x10^-7)(1.6))/5.2x10^-4
x₂ = 2.9x10^-3 m

△x = | 2.2x10^-3 - 2.9x10^-3 |
△x = 7.0x10^-4 m

(B) Using bright:
x₁ = ((2)(4.80x10^-7)(1.6))/5.2x10^-4
x₁ = 3.0x10^-3 m

x₂ = ((2)(1.6)(6.32x10^-7))/5.4x10^4
x₂ = 3.9x10^-3 m

△x = | 3.0x10^-3 - 3.9x10^-3 |
△x = 9.0x10^-4 m

They aren't too far off. I don't quite trust the textbook solutions since plenty of wavelength-related solutions were wrong. They did, however, use the formula for wavelengths with dark fringes...
 
Physics news on Phys.org
If neither "bright" nor "dark" is explicitly mentioned, I would assume "bright", but that's my personal interpretation. Also, for better accuracy, I would first find an algebraic formula for Δx using just symbols and then put in the numbers.
 
Last edited:
kuruman said:
I would first find an algebraic formula for Δx using just symbols and then put in the numbers.
Would that mean something like this?
Δx/L = λ/d
Δx = Lλ/d
 
okandrea said:
Would that mean something like this?
Δx/L = λ/d
Δx = Lλ/d
Not really, what happened to the ##n## in the expression? You need two expressions, one for each wavelength. It helps being organized.
1. For wavelength 1 you have ##x_1=nL\lambda_1/d##.
2. Write a similar expression for ##x_2##.
3. Find an algebraic expression for the difference ##x_2-x_1## for the second order fringes.
4. Put in the numbers.

On edit: My earlier statement that it doesn't matter if you use dark or bright fringes is incorrect. It does make a difference if the wavelengths are different. I edited that statement.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top