- #1
rmiller70015
- 110
- 1
- Homework Statement
- N identical, weakly interacting bosons are trapped in a 3-dimensional harmonic oscillator. Use the Gross-Pitaevskii equation and N = large to find the chemical potential as a function of the number of bosons.
- Relevant Equations
- ##V(r) = \frac{1}{2}m\omega ^2 r^2##
GP: ##[-\frac{\bar{h}^2 \nabla ^2}{2m} - \mu + V(r) + U|\Psi (r)|^2]\Psi (r) = 0###
1. Since N is large, ignore the kinetic energy term.
##[-\mu + V(r) + U|\Psi (r)|^2]\Psi (r) = 0##
2. Solve for the density ##|\Psi (r)|^2##
##|\Psi (r)|^2 = \frac{\mu - V(r)}{U}##
3. Integrate density times volume to get number of bosons
##\int|\Psi (r)|^2 d\tau = \int \frac{\mu - V(r)}{U}d\tau###
## = \frac{4\pi}{U} \int_0^r \mu \rho ^2 - \frac{1}{2}m\omega ^2 \rho ^4 d\rho## where ##\rho## is a dummy variable for integration
## N = \frac{4\pi}{U}( \frac{1}{3}\mu r^3 - \frac{1}{10}V(r)r^3 )##4. Solve for ##\mu##
##\mu = \frac{3NU}{4\pi r^3} - \frac{3}{10}V(r)##
The problem is that my professor said that chemical potential should go like ##N^\frac{2}{5}## or something like that. So I am concerned that I didn't do something correctly. She also recalls things from memory incorrectly a lot of the time so I may actually be correct. I would just like a second opinion.
##[-\mu + V(r) + U|\Psi (r)|^2]\Psi (r) = 0##
2. Solve for the density ##|\Psi (r)|^2##
##|\Psi (r)|^2 = \frac{\mu - V(r)}{U}##
3. Integrate density times volume to get number of bosons
##\int|\Psi (r)|^2 d\tau = \int \frac{\mu - V(r)}{U}d\tau###
## = \frac{4\pi}{U} \int_0^r \mu \rho ^2 - \frac{1}{2}m\omega ^2 \rho ^4 d\rho## where ##\rho## is a dummy variable for integration
## N = \frac{4\pi}{U}( \frac{1}{3}\mu r^3 - \frac{1}{10}V(r)r^3 )##4. Solve for ##\mu##
##\mu = \frac{3NU}{4\pi r^3} - \frac{3}{10}V(r)##
The problem is that my professor said that chemical potential should go like ##N^\frac{2}{5}## or something like that. So I am concerned that I didn't do something correctly. She also recalls things from memory incorrectly a lot of the time so I may actually be correct. I would just like a second opinion.
Last edited: