What are Black Holes and How Do They Differ from Dense Balls of Matter?

In summary, black holes are regions of space from which light cannot escape, and they are formed when matter is compressed to a (zero dimensional) point. To create a black hole, the mass-volume ratio must be greater than 1.
  • #1
Char. Limit
Gold Member
1,222
22
What are black holes?

A theory I have is simple, and thus must be wrong. It seems to me that black holes are just extremely dense balls of matter, not holes at all, really. Just superdense balls.

So, what is the real explanation, likely involving 105 vectors and 31 dimensions?
 
Astronomy news on Phys.org
  • #2
When matter is compressed to a (zero dimensional) point and the resulting gravitational force is so large that it creates a region where the velocity needed to escape the gravitational pull is larger than the speed of light.

Stellar black holes are formed in some supernovae.
 
  • #3
So instead of 31 dimensions, I get zero...

Wouldn't any amount of mass at zero length, width, and depth, implying zero volume, have an infinite density?

And so... in order for a black hole to exist, it must have a sufficient mass within that point, correct? How is this mass determined? Is the equation [itex]g=\frac{G m_1 m_2}{r^2}[/itex] used to determine this?

I'm not looking for the simple answer, don't worry.
 
  • #4
Char. Limit said:
And so... in order for a black hole to exist, it must have a sufficient mass within that point, correct? How is this mass determined? Is the equation [itex]g=\frac{G m_1 m_2}{r^2}[/itex] used to determine this?
The http://en.wikipedia.org/wiki/Schwarzschild_radius" of an object tells us the mass-volume ratio required for a black hole to exist. I think of it in basic terms, a black hole is region of space from which light cannot escape, so what does this imply? Well the greater the ratio between mass and volume, the stronger the gravity, and thus the higher the escape velocity. At some point the escape velocity exceeds c, and that is when a black hole can exist.
 
Last edited by a moderator:
  • #5
well when enough mass is compressed into a small enough volume it collapses in on itself to form a singularity. the singularity is actually where current laws of physics break down: if you use the
[tex]g=\frac{G m_1 m_2}{r^2}[/tex]
equation, then you are plugging in a 0 for r (because its a point), which means that you are dividing by 0, which means
[tex]g=\infty[/tex]. Infinite is obviously a problem...
 
  • #6
Interestingly enough, a black hole need not be very dense at all. For example, supermassive black holes, like those proposed to exist at the centers of galaxies, can have an average density less than that of water or air.

As far as production is concerned, one merely needs to cram matter into a small enough (nonzero!) volume, at which point a horizon forms around the object beyond which no light escapes (and conversely, any probing of the interior of this horizon is impossible! That is to say, we cannot experimentally know what goes on inside the horizon!). However, General Relativity tells us that the matter within this horizon MUST continue to fall to the center of the object until it all accumulates at a point. This is the so-called singularity.
 
  • #7
Well, we could know what happens in the horizon... but we wouldn't be able to communicate what we know to anyone.

So... does a black hole have a definite, measurable mass?
 
  • #8
Char. Limit said:
Well, we could know what happens in the horizon... but we wouldn't be able to communicate what we know to anyone.

True true. But we tend not to consider this possibility!

So... does a black hole have a definite, measurable mass?

Yes. One method of measuring would be gravitational interactions, if we see a neutron star or something similar orbiting a BH.
 
  • #9
Would it make you laugh if, when you said that a black hole could be less than water, I pictured a black hole floating in a giant tub of water?

And of course, is there a black hole at every galaxy's center?
 
  • #10
Char. Limit said:
And of course, is there a black hole at every galaxy's center?

I think the current belief is that the majority of all galaxies have a supermassive black hole at their centers. Of course, it's difficult make a decision about ALL galaxies, and I'm not exactly in the loop of galaxy formation, but definitely most.
 
  • #11
I have to ask what is a Schwarzlöcher black hole? Did you mean to type Schwarzschild? I was taught that it is incorrect to imagine black holes as having a surface on which one could stand, even notionally. Is this correct? As Nabeshin mentioned it would be hard to say with 100% confidence that all galaxies contain within their center a SMBH. I believe over a million galaxies have been analyzed and that the strong majority of them possesses a super massive black hole at their core, so that is strong evidence for that assumption.

The thing about density is a fun, for example a scoop of Saturn material would float about in your tub provided you could contain it in some sort of rigid shape. I am going to buy my children floating Saturns and a floating black thing to put in the bath, who needs ducks.

Joe
 
  • #12
Agent M27 said:
I have to ask what is a Schwarzlöcher black hole? Did you mean to type Schwarzschild? I was taught that it is incorrect to imagine black holes as having a surface on which one could stand, even notionally. Is this correct?

das Loch means the hole in German
die Löcher means "the holes" (plural)

Schwarzloch = black hole
Schwarzlöcher = black holesYou were taught right, Joe. The event horizon is a mathematically defined surface ("of no return") but it is not a surface you could stand on. Even notionally.
 
  • #13
Correct Marcus. When I can't think of an interesting name for a title, I default to German. It's a little quirk.

I would love to get a miniature Saturn representation for a bath...

Wait! Has anyone sold planet representations at the density they would be? That'd be a great way to teach that part of planetology. And it can't be astrology, because that's the study of the stars.
 

Related to What are Black Holes and How Do They Differ from Dense Balls of Matter?

1. What is a black hole?

A black hole is a region in space where the gravitational pull is so strong that nothing, including light, can escape from it. It is formed when a massive star dies and its core collapses under its own gravity.

2. How big can a black hole get?

The size of a black hole can vary greatly, from a few miles in diameter to billions of times the size of our sun. The size of a black hole depends on its mass, with larger black holes having a stronger gravitational pull.

3. Can anything escape from a black hole?

Once something, including light, crosses the event horizon (the point of no return) of a black hole, it cannot escape. However, Hawking radiation is a theoretical process by which tiny particles can escape from a black hole, but this has not yet been observed.

4. Do black holes move or spin?

Yes, black holes can move and spin, just like any other object in space. The speed of a black hole's spin depends on its initial angular momentum, which is determined by the mass and spin of the object that formed it.

5. Are black holes dangerous?

Black holes are not dangerous in the sense that they will actively seek to harm or destroy anything that comes near them. However, their immense gravitational pull can cause disruption and destruction to objects that get too close, such as stars and planets.

Similar threads

Replies
13
Views
937
Replies
12
Views
1K
Replies
4
Views
1K
Replies
2
Views
2K
Replies
22
Views
2K
Back
Top