MHB What are the dimensions of the shapes in this tangram problem?

  • Thread starter Thread starter narledge
  • Start date Start date
AI Thread Summary
The discussion revolves around determining the dimensions of various shapes in a tangram problem, specifically focusing on two large isosceles right triangles, one medium isosceles right triangle, two small isosceles right triangles, a square, and a parallelogram, all fitting into a 1 unit by 1 unit square. The user has calculated some dimensions using the Pythagorean theorem, identifying the hypotenuse and sides of the triangles and the square, but is struggling to provide geometric justification for these dimensions. Key calculations include the sides of the smaller triangles as 1/2 for the hypotenuse and square root of 2/4 for the medium triangle. The discussion emphasizes the need for geometric proof to validate the findings. The user seeks assistance in solidifying their geometric reasoning to support their calculated dimensions.
narledge
Messages
4
Reaction score
0
I am currently working on an assignment using Tanagrams. I have the information that I have:
• 2 large, and congruent, isosceles right triangles
• 1 medium isosceles right triangle
• 2 small, and congruent, isosceles right triangles
• 1 square
• 1 parallelogram

The pieces can be rearranged with no gaps or overlapping of shapes into a square with dimensions 1 unit by 1 unit (i.e., the entire area of the square is 1 unit^{2})

You must find the dimensions of all shapes and cannot make midpoint assumptions.

Each dimension must be supported by geometric justification. I have attached a picture and would appreciate any help in reaching an answer.View attachment 5180

View attachment 5181
 

Attachments

  • tangram puzzle.pdf
    tangram puzzle.pdf
    93.1 KB · Views: 86
  • tangram.png
    tangram.png
    8.7 KB · Views: 109
Mathematics news on Phys.org
Hello and welcome to MHB, narledge! :D

We ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
I am sorry for not doing that ----

I have found the length of AB, AF, FK, and FJ by using the given dimensions of 1 and Pythagorean theorem.

The sides of the smaller two triangles at 1/2 for hypotenuse and square root of 2 /4

The sides of the medium are hypotenuse square root of 2/2 and side 1/2

square is side square root of 2/4

parallelogram sides square root of 2/4 and 1/2

Just having difficulty proving it using geometry.
 
Okay, we are given:

$$\overline{AJ}=\overline{JK}=1$$

And since $$\triangle AFJ$$ and $$\triangle JFK$$ are right isosceles triangles, we know by Pythagoras:

$$\overline{AF}=\overline{JF}=\overline{FK}=\frac{\sqrt{2}}{2}$$

From this, we may conclude that $F$ is at the mid-point of the square $AJKC$. Can you justify that $\overline{BF}$ has to be a vertical line, and thus $$\overline{AB}=\overline{BC}=\frac{1}{2}$$?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top