B What are the energy eigenvalues of a harmonic oscillator?

Lotto
Messages
251
Reaction score
16
TL;DR Summary
I have this formula ##E_n=hf\left(n+\frac 12 \right)##. I don't understand what energy it describes.
Is it a total energy of a vibrating molecule? So is it a sum of potential and kinetic energy? Or it is only a total energy of a vibrational motion of the molecule? Or is it only a potencial energy, when it is related to a dissociation curve? I am confused.
 
Physics news on Phys.org
Lotto said:
TL;DR Summary: I have this formula ##E_n=hf\left(n+\frac 12 \right)##. I don't understand what energy it describes.

Is it a total energy of a vibrating molecule? So is it a sum of potential and kinetic energy? Or it is only a total energy of a vibrational motion of the molecule? Or is it only a potencial energy, when it is related to a dissociation curve? I am confused.
It looks the energy levels of an ideal harmonic oscillator, and will be the sum of the potential and kinetic energy of the oscillator. How this relates to a vibrating molecule depends on how accurately the molecule can be modeled as an ideal harmonic oscillator.

In general, we know what energies are involved by looking at the Hamiltonian that we started with. In the case of the ideal harmonic oscillator, that Hamiltonian contains a kinetic energy term and a potential energy term.
 
  • Like
Likes vanhees71, gentzen, PeroK and 4 others
Indeed, these are the energy eigenvalues of a harmonic oscillator. It describes the conserved total energy of the oscillator, when it is prepared in a state of determined energy. The possible values of this total energy are the eigenvalues of the Hamilton operator,
$$\hat{H}=\frac{1}{2m} \hat{p}^2 + \frac{m \omega^2}{2} \hat{x}^2.$$
The energy eigenvalues are
$$E_n=h f \left (n+\frac{1}{2} \right) = \hbar \omega \left (n+\frac{1}{2} \right), \quad n \in \{0,1,2,3,\ldots \}=\mathbb{N}_0,$$
where ##\hbar=h/(2 \pi)## is the "modified quantum of action/Planck's constant)". Nowadays almost nobody uses the original ##h## anymore.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top