I What does "transforms covariantly" mean here?

AI Thread Summary
The Lagrangian for a scalar field is Lorentz invariant and transforms covariantly under translation. Covariant transformation means that the field transforms according to the relationship between the original and translated coordinates. While the scalar field transforms under translation, the Lagrangian itself is considered invariant, which is a specific case of covariance. The distinction between invariance and covariance is important, as it highlights different aspects of how physical quantities behave under transformations. Understanding these nuances is crucial for proper interpretation in the context of field theory.
Hill
Messages
735
Reaction score
575
TL;DR Summary
The Lagrangian for scalar field under translation
The Lagrangian, $$\mathcal L(x)= \frac 1 2 \partial^{\mu} \phi (x) \partial_{\mu} \phi (x) - \frac 1 2 m^2 \phi (x)^2$$ for a scalar field ##\phi (x)## is said to be Lorentz invariant and to transform covariantly under translation.
What does it mean that it transforms covariantly under translation?
 
Physics news on Phys.org
This means that under translation ##x\to x'(x)=x+a## it transforms as
$$\phi(x)\to\phi'(x')=\phi(x(x'))$$
where ##x(x')=x'-a## is the inverse of ##x'(x)##.
 
Demystifier said:
This means that under translation ##x\to x'(x)=x+a## it transforms as
$$\phi(x)\to\phi'(x')=\phi(x(x'))$$
I understand that this is how ##x## and how ##\phi## transform. But regarding ##\mathcal L##, I think, it makes it rather invariant under translation, doesn't it?
 
Hill said:
I understand that this is how ##x## and how ##\phi## transform. But regarding ##\mathcal L##, I think, it makes it rather invariant under translation, doesn't it?
Yes, but invariant is a special case of covariant. More precisely, covariance of scalars is invariance.
 
Demystifier said:
Yes, but invariant is a special case of covariant. More precisely, covariance of scalars is invariance.
Thank you. I thought, there is a reason for him separating the two transformations rather than saying that it is "Lorentz and translational invariant" or "Poincare invariant."
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top