- #1
Another1
- 40
- 0
\(\displaystyle \lim_{{T}\to{\infty}}N \bar{h}\omega \left( \frac{1}{2} + \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)\)
In term \(\displaystyle \lim_{{T}\to{\infty}}N \bar{h}\omega \left( \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)=N \bar{h}\omega \lim_{{T}\to{\infty}}\left( \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)\)
but \(\displaystyle \left( \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)\) in the form \(\displaystyle \frac{1}{0}\)
please give me a idea
View attachment 8741
In term \(\displaystyle \lim_{{T}\to{\infty}}N \bar{h}\omega \left( \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)=N \bar{h}\omega \lim_{{T}\to{\infty}}\left( \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)\)
but \(\displaystyle \left( \frac{1}{e^{\frac{ \bar{h}\omega}{k_BT}}-1} \right)\) in the form \(\displaystyle \frac{1}{0}\)
please give me a idea
View attachment 8741