What is a Different Method for Implicit Differentiation?

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
Find the equation of the normal to a curve given parametric equations;

##x=t^3, y=t^2##
Relevant Equations
Parametric equations
This is a text book example- i noted that we may have a different way of doing it hence my post.

1674340180575.png


Alternative approach (using implicit differentiation);

##\dfrac{x}{y}=t##

on substituting on ##y=t^2##

we get,

##y^3-x^2=0##

##3y^2\dfrac{dy}{dx}-2x=0##

##\dfrac{dy}{dx}=\dfrac{2x}{3y^2}##

at points ##(-8,4)##

##\dfrac{dy}{dx}=\dfrac{-1}{3}##

...the rest of the steps to required solution will follow...

...any insight is welcome.
 
Last edited:
Physics news on Phys.org
Or \begin{split}<br /> \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} &amp;= \begin{pmatrix} t^3 \\ t^2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3t^2 \\ 2t \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\<br /> &amp;= \begin{pmatrix} t^3 \\ t^2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2t \\ -3t^2 \\ 0 \end{pmatrix}<br /> \end{split}<br /> and then <br /> \lambda = \frac{x - t^3}{2t} = \frac{y - t^2}{-3t^2}\quad\Rightarrow\quad<br /> y = t^2 - 3t^2\frac{x - t^3}{2t} = t^2 + \tfrac32 t^4 - \tfrac32 tx.
 
The book-solution is presumably given simply as a teaching-demonstration of how to solve this type of problem using parametric coordinates. But note, sometimes elimination of the parametric coordinates simplifies the problem. In this particular question(at the risk of stating the obvious):

##x=t^3, y= t^2 ⇒ y = x^{\frac 23}##

##\frac {dy}{dx} = \frac 23 x^{-\frac13}##

When ##x = -8, \frac {dy}{dx} = \frac 23 (-8)^{-\frac13}= -\frac 13##

etc.
 
Back
Top