- #1
QuestForInsight
- 34
- 0
Let $\mathbb{G}$ be a set with a map $(\xi, ~ \eta) \mapsto f(\xi, ~\eta)$ from $\mathbb{G}\times\mathbb{G}$ into $\mathbb{G}$. For every pair $(\xi, ~ \eta)$ in $\mathbb{G}$ let $f(\xi, ~\eta) = f(\eta, ~ \xi)$. Suppose there are elements $\omega$ and $\xi'$ in $\mathbb{G}$ such that for every $\xi$ in $\mathbb{G}$ we have $f(\xi, ~ \omega) = f(\xi)$ and $f(\xi, ~ \xi') = f(\omega).$ This structure is called an Abelian group when $f(\xi, \eta) = \xi+\eta$.
Is the above definition correct/does it miss anything?
Is the above definition correct/does it miss anything?