What is Sylow's theorem and how does it relate to finite groups?

  • Thread starter Thread starter halvizo1031
  • Start date Start date
  • Tags Tags
    Theorem
halvizo1031
Messages
77
Reaction score
0

Homework Statement


LET G BE A FINITE GROUP WHOSE ORDER IS DIVISIBLE BY THE PRIME P. SUPPOSE P^M IS THE HIGHEST POWER OF P WHICH IS A FACTOR OF |G|AND SET K=(|G|/P^M), THEN THE GROUP G CONTAINS AT LEAST ONE SUBGROUP OF |P^M|.

I have the proof but can someone explain it in simpler terms? Maybe even a few examples please.



Homework Equations





The Attempt at a Solution


Let X denote the collect of all subsets of G which have p^m elements and let G act on X by left translation so that the group element g is in G sends the subset A in X to gA. The size of X is the binomial coefficient kp^m choose p^m which is not divisible by p. Hence, there must be an orbit G(A) whose size is not a multiple of p. We have |G|=|G(A)|*|G(subA)|, consequently |G(subA)| is divisible by p^m. Now G(subA) is the stabilizer of A, so if a is in A and g is in G(subA), the ga is in A. This means that the whole right coset of G(subA)a is contained in A whenever a is in A and |G(subA)| cannot exceed p^m. Therefore, G(subA) is a subgroup of G which has order p^m.
 
Last edited:
Physics news on Phys.org
The statement is pretty simple. It says that if you have a Group of order n, where n has factoriaztion p^k * m, where p is a prime number, then there exists a subgroup of order p^k.

The proof is a bit tricky, since it's in direct. What about it is confusing you?
 
could you maybe give me a few examples? It makes sense but the proof is a bit rough for me.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...

Similar threads

Back
Top