MHB What is the area of triangle PQR divided into six smaller triangles?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Area Triangle
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
As shown in the figure below, triangle $PQR$ is divided into six smaller triangles by lines drawn from the vertices through a common interior point. The areas of four of these triangles area as indicated. Find the area of triangle $PQR$.
 

Attachments

  • challenge problem.JPG
    challenge problem.JPG
    8.6 KB · Views: 113
Mathematics news on Phys.org
Label the common interior point $S$, the intersection opposite $P$, $T$, opposite $Q$, $U$ and opposite $R$, $V$. Let $\triangle{PSU}$ be $x$ and $\triangle{RST}$ be $y$.$$\text{ }$$The bases of two adjacent triangles sharing a common side and having the same height are in the same ratio as the ratio of their areas, hence$$\frac34(124+x)=65+y\Rightarrow112=4y-3x$$and$$\frac12(84+x)=y\Rightarrow84=2y-x$$Solving this system of equations yields $x=56$ and $y=70$, so the area of $\triangle{PQR}$ is $315\text{ units}^2$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
3
Views
2K
Replies
1
Views
1K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
7
Views
5K
Replies
2
Views
5K
Back
Top