MHB What is the factorization of $30x^4-41x^3y-129x^2y^2+100xy^3+150y^4$?

AI Thread Summary
The polynomial $30x^4-41x^3y-129x^2y^2+100xy^3+150y^4$ can be factored using the roots $x=-\frac{3}{2}y$ and $x=\frac{5}{3}y$. Applying the Ruffini algorithm leads to the factorization $P(x,y) = (2x+3y)(3x-5y)(5x^2-6yx-10y^2)$. Further solving the quadratic $5x^2-6yx-10y^2$ yields additional roots, resulting in the complete factorization $5(2x+3y)(3x-5y)\left(x-\frac{3+\sqrt{59}}{5}y\right)\left(x-\frac{3-\sqrt{59}}{5}y\right)$. This method effectively utilizes the rational roots theorem and polynomial division techniques for homogeneous polynomials.
paulmdrdo1
Messages
382
Reaction score
0
Factor $30x^4-41x^3y-129x^2y^2+100xy^3+150y^4$.
Please help me get started. I tried grouping the terms but still can't see any factorization that is familiar to me.

Thanks.
 
Mathematics news on Phys.org
paulmdrdo said:
Factor $30x^4-41x^3y-129x^2y^2+100xy^3+150y^4$.

Consider $$P_y(x)=30x^4+(-41y)x^3+(-129y^2)x^2+(100y^3)x+150y^4$$ as a polynomial in $x$ and $y$ as a parameter Suppose there are roots of the form $x=ky$. Then, $$P_y(ky)=\left(30k^4-41k^3-129k^2+100k+150\right)y^4=0.$$ Consider the equation $$30k^4-41k^3-129k^2+100k+150=0.$$ Using the theorem of the rational roots we get $k=-3/2$ and $k=5/3$, so $x=-(3/2)y$ and $x=(5/3)y$ are roots of $P_y(x)$ for all $y$, so: $$P_y(x)=\left(x+\frac{3}{2}y\right)\left(x-\frac{5}{3}y\right)q(x,y).$$ Could you continue?
 
I'm still not sure how to continue from there. Do I need to use rational roots theorem?

And What do you call that method? Does this always work on the polynomials that has the same form I posted?
 
Last edited:
paulmdrdo said:
I'm still not sure how to continue from there. Do I need to use rational roots theorem?

Using the Ruffini Algorithm for the root $x=-\dfrac{3}{2}y$
$$\begin{array}{r|rrrrr}
& 30 & -41y & -129y^2 & 100y^3 & 150y^4 \\
-\dfrac{3}{2}y & & -45y & 129y^2 & 0 & -150y^4 \\
\hline & 30 & -86y & 0 & 100y^3 & 0\end{array}$$
This implies $$p(x,y)=\left(x+\frac{3}{2}y\right)(\underbrace{30x^3-86yx^2+100y^3}_{Q(x,y)}).$$
Now, decompose $Q(x,y)$ in the same way with the root $x=\dfrac{5}{3}y$.

paulmdrdo said:
And What do you call that method? Does this always work on the polynomials that has the same form I posted?

No name, this is a strategy in this particular case, based in the fact that the polynomial is homogeneous, testing linear factors, and all of this with the "hope" that the equation in $k$ has rational roots.
 
I,ve decided to complete the solution:

Applying the Ruffini algorithm to $Q_1(x,y)$: $$\begin{array}{r|rrrrr}
& 30 & -86y & 0 & 100y^3 \\
\dfrac{5}{3}y & & 50y & -60y^2 & -100y^3 \\
\hline & 30 & -36y & -60y^2 & 0 \end{array}$$ $$\Rightarrow P(x,y)=\left(x+\frac{3}{2}y\right)(\underbrace{30x^3-86yx^2+100y^3}_{Q_1(x,y)})$$ $$=\left(x+\frac{3}{2}y\right)\left(x-\frac{5}{3}y\right)\left(30x^2-36yx-60y^2\right)$$ $$=\dfrac{1}{6}(2x+3y)(3x-5y)\left(30x^2-36yx-60y^2\right)$$ $$=(2x+3y)(3x-5y)\left(5x^2-6yx-10y^2\right).$$
Let us now factorice $Q_2(x,y)=5x^2-6yx-10y^2$. Solving the quadratic equation on $x$: $$5x^2-6yx-10y^2=0,\quad x=\dfrac{6y\pm \sqrt{236y^2}}{10}=\dfrac{6y\pm 2\sqrt{59}y}{10},$$ $$x=\dfrac{3+\sqrt{59}}{5}y,\quad x=\dfrac{3-\sqrt{59}}{5}y$$ So, we can write:
$$\boxed{\; P(x,y)=5(2x+3y)(3x-5y)\left(x-\dfrac{3+\sqrt{59}}{5}y\right)\left(x-\dfrac{3-\sqrt{59}}{5}y\right)\;}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top