MHB What is the final pressure of helium and neon gas mixture in this case?

AI Thread Summary
The final pressure of a helium and neon gas mixture is calculated using the formula for ideal gases, leading to a result of 6.67 bar, which contradicts the initially provided answer of 10.0 bar. The calculation considers the moles of each gas and their respective pressures, while eliminating volume from the equations. By applying the ideal gas law, the final pressure is derived from the total moles and the inverse of the pressures. Therefore, the correct final pressure for the mixture is 6.67 bar, indicating the initial answer was incorrect.
WMDhamnekar
MHB
Messages
376
Reaction score
28
Gas laws Helium Neon.png


The answer given to the above question is Final pressure$=\frac{(10.0mol\times 5.00bar) + (5.00 mol \times 20.0 bar)}{(10.0 mol +5.00 mol)}= 10.0 bar$ Is this answer correct? if yes, How and why?

My question is while computing this answer, the volumes of each gas is not considered.

Note:- While computing the volumes of each gas, temperature is not considered as it is a constant.The computed volume of helium gas $=\frac{(10.0mol \times 8.314472 J/mol\cdot K)}{5.00 bar}=0.16628944 Litres$

The computed volume of neon gas $= \frac{(5.00 mols \times 8.314472 J/mol\cdot K)}{20.0 bar}= 0.02078618 Litres$

How to use this additional information to compute the final pressure of the gas mixture?
 
Mathematics news on Phys.org
We can treat noble gasses as ideal gasses, which means we can use the formula $p V = n R T$, which is independent of the actual type of gas.
Let the first container have $n_1$ moles, pressure $p_1$, and volume $V_1$.
Let the second container have $n_2$, $p_2$, and $V_2$.
Let the temperature be $T$, and let the final pressure be $p$.

Then we have:
\begin{cases}p_1V_1 = n_1 R T \\ p_2 V_2 = n_2 R T \\ p(V_1+V_2) = (n_1+n_2) R T \end{cases}
Since we do not know the volumes, we will eliminate them from the equations:
$$\begin{cases}V_1 = \frac{n_1 R T}{p_1} \\ V_2 = \frac{n_2 R T}{p_2} \\ p(V_1+V_2) = (n_1+n_2) R T \end{cases}
\implies p = \frac{(n_1+n_2) R T}{V_1+V_2} = \frac{(n_1+n_2) R T}{\frac{n_1 R T}{p_1}+\frac{n_2 R T}{p_2}}
=\frac{n_1+n_2}{\frac{n_1}{p_1}+\frac{n_2}{p_2}}= \frac{10.0+5.00}{\frac{10.0}{5.00}+\frac{5.00}{20.0}}=6.67\,\text{bar}$$

So it looks as if the given answer is incorrect.
The final pressure should be $p=6.67\,\text{bar}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top