What Is the Final Velocity of a 2 kg Mass on a Frictional Incline?

AI Thread Summary
The discussion centers on calculating the final velocity of a 2 kg mass sliding down a frictional incline after being released from a compressed spring. Key points include the mass's initial potential energy, the impact of friction over a specific distance, and the need to correctly calculate the normal force on the incline using the angle of inclination. Participants emphasize the importance of understanding energy conservation, including how much energy is lost to friction. The conversation highlights the formulas for kinetic and potential energy, as well as the method for calculating frictional force. Overall, the thread seeks clarity on energy dynamics in a frictional incline scenario.
Pakbabydoll
Messages
45
Reaction score
0

Homework Statement


A spring with a spring- constant 3.4N/ cm is compressed 29cm and released. The 2 kg mass skids down the frictional incline of height 50 cm and inclined at 21 degrees angle.
The acceleration of gravity is 9.8 m/s^2.
The path is frictionless except for a distance of .07 m along the incline which has a coefficient of friction of 0.5.



Homework Equations


I am kind of completely lost.



The Attempt at a Solution


so far this is what I have but its probably wrong anyway

50cos(21)= 46.67902132486
50sin(21)= 17.9183974

N=mg
N= (2)(9.8)= 19.6

Friction= NmK
Friction= (19.6)(0.5)= 9.8

PE= 14.297m
KE= 9.8

Total Energy= 24.097

Problem attached its #6..
Thanks
 

Attachments

Physics news on Phys.org
Pakbabydoll said:
N=mg
N= (2)(9.8)= 19.6
The normal force while on the incline doesn't equal mg.

What's the total energy of the mass initially?

How much energy is dissipated due to work against friction as it slides down?

What's the final energy?
 
Doc Al said:
The normal force while on the incline doesn't equal mg.

What's the total energy of the mass initially?

How much energy is dissipated due to work against friction as it slides down?

What's the final energy?


So to get the normal force on an incline can I use the angle? Would it be like 9.8*cos(21)*2?
and how do you get friction for a specific area?
 
Pakbabydoll said:
So to get the normal force on an incline can I use the angle? Would it be like 9.8*cos(21)*2?
Yes.
and how do you get friction for a specific area?
Just like for anywhere else. Kinetic friction = μN.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top